刷题首页
题库
高中数学
题干
某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率
,记该班级完成
首背诵后的总得分为
.
(1)求
且
的概率;
(2)记
,求
的分布列及数学期望.
上一题
下一题
0.99难度 解答题 更新时间:2019-09-28 02:43:08
答案(点此获取答案解析)
同类题1
为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“国Ⅰ,Ⅱ轻型汽油车限行”,“整治散乱污染企业”等.下表是该市2016年和2017年12月份的空气质量指数(AQI)(AQI指数越小,空气质量越好)统计表.
表1:2016年12月AQI指数表:单位(
)
日期
1
2
3
4
5
6
7
8
9
10
11
AQI
47
123
232
291
78
103
159
132
37
67
204
日期
12
13
14
15
16
17
18
19
20
21
22
AQI
270
78
40
51
135
229
270
265
409
429
151
日期
23
24
25
26
27
28
29
30
31
AQI
47
155
191
64
54
85
75
249
329
表2:2017年12月AQI指数表:单位(
)
日期
1
2
3
4
5
6
7
8
9
10
11
AQI
91
187
79
28
44
49
27
41
56
43
28
日期
12
13
14
15
16
17
18
19
20
21
22
AQI
28
49
94
62
40
46
48
55
44
74
62
日期
23
24
25
26
27
28
29
30
31
AQI
50
50
46
41
101
140
221
157
55
根据表中数据回答下列问题:
(Ⅰ)求出2017年12月的空气质量指数的极差;
(Ⅱ)根据《环境空气质量指数(AQI)技术规定(试行)》规定:当空气质量指数为0~50时,空气质量级别为一级.从2017年12月12日到12月16这五天中,随机抽取三天,空气质量级别为一级的天数为
,求
的分布列及数学期望;
(Ⅲ)你认为该市2017年初开始采取的这些大气污染治理措施是否有效?结合数据说明理由.
同类题2
某钢铁加工厂新生产一批钢管,为了了解这批产品的质量状况,检验员随机抽取了
件钢管作为样本进行检测,将它们的内径尺寸作为质量指标值,由检测结果得如下频率分布表和频率分布直方图:
分组
频数
频率
合计
(1)求
,
;
(2)根据质量标准规定:钢管内径尺寸大于等于
或小于
为不合格,钢管内径尺寸在
或
为合格,钢管内径尺寸在
为优等.钢管的检测费用为
元/根,把样本的频率分布作为这批钢管的概率分布.
(i)若从这批钢管中随机抽取
根,求内径尺寸为优等钢管根数
的分布列和数学期望;
(ii)已知这批钢管共有
根,若有两种销售方案:
第一种方案:不再对该批剩余钢管进行检测,扣除
根样品中的不合格钢管后,其余所有钢管均以
元/根售出;
第二种方案:对该批钢管进行一一检测,不合格钢管不销售,并且每根不合格钢管损失
元,合格等级的钢管
元/根,优等钢管
元/根.
请你为该企业选择最好的销售方案,并说明理由.
同类题3
某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):
空气质量指数
空气质量等级
1级优
2级良
3级轻度污染
4级中度污染
5级重度污染
6级严重污染
该社团将该校区在2018年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图,把该直方图所得频率估计为概率.
(1)请估算2019年(以365天计算)全年该区域空气质量优良的天数(未满一天按一天计算);
(2)该校2019年6月7、8日将作为高考考场,若这两天中某天出现5级重度污染,需要净化空气费用8000元,出现6级严重污染,需要净化空气费用12000元,记这两天净化空气总费用为
元,求
的分布列及数学期望.
同类题4
甲、乙两名篮球运动员在四场比赛中的得分数据以茎叶图记录如下:
(Ⅰ)求乙球员得分的平均数和方差;
(Ⅱ)分别从两人得分中随机选取一场的得分,求得分和
Y
的分布列和数学期望.
(注:方差
s
2
(
x
1
)
2
+(
x
2
)
2
+…+(
x
n
)
2
其中
为
x
1
,
x
2
,…
x
n
的平均数)
同类题5
已知甲箱中装有3个红球、3个黑球,乙箱中装有2个红球、2个黑球,这些球除颜色外完全相同. 某商场举行有奖促销活动,设奖规则如下:每次分别从以上两个箱中各随机摸出2个球,共4个球. 若摸出4个球都是红球,则获得一等奖;摸出的球中有3个红球,则获得二等奖;摸出的球中有2个红球,则获得三等奖;其他情况不获奖. 每次摸球结束后将球放回原箱中.
(1)求在1次摸奖中,获得二等奖的概率;
(2)若连续摸奖2次,求获奖次数
的分布列及数学期望
.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
写出简单离散型随机变量分布列
求离散型随机变量的均值