一个袋中有m个红球,n个白球,p个黑球(),从中任取1个球(每球取到的机会均等),设表示取出的红球个数,表示取出的白球个数,则
A.B.
C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别







2
3
5
15
18
12

0
5
10
10
7
13
 
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元)
10
20
概率


 
现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.
附表及公式:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
五一劳动节放假,某商场进行一次大型抽奖活动.在一个抽奖盒中放有红、橙、黄、绿、蓝、紫的小球各2个,分别对应1分、2分、3分、4分、5分、6分.从袋中任取3个小球,按3个小球中最大得分的8倍计分,计分在20分到35分之间即为中奖.每个小球被取出的可能性都相等,用表示取出的3个小球中最大得分,求:
(1)取出的3个小球颜色互不相同的概率;
(2)随机变量的概率分布和数学期望;
(3)求某人抽奖一次,中奖的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;
(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到班同学人数的分布列和数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
长沙某超市计划按月订购一种冰激凌,每天进货量相同,进货成本为每桶5元,售价为每桶7元,未售出的冰激凌以每桶3元的价格当天全部处理完毕.根据往年销售经验,每天的需求量与当天最高气温(单位:)有关,如果最高气温不低于,需求量为600桶;如果最高气温(单位:)位于区间,需求量为400桶;如果最高气温低于,需求量为200桶.为了确定今年九月份的订购计划,统计了前三年九月份各天的最高气温数据,得下面的频数分布表:
最高气温(






天数
2
16
36
25
7
4
 
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求九月份这种冰激凌一天的需求量(单位:桶)的分布列;
(2)设九月份一天销售这种冰激凌的利润为(单位:元),当九月份这种冰激凌一天的进货量(单位:桶)为多少时,的均值取得最大值?
当前题号:6 | 题型:解答题 | 难度:0.99
某市旅游局为了进一步开发旅游资源,需要了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如下:若景点甲中的数据的中位数是126,景点乙中的数据的平均数是124.

(1)求的值;
(2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据(视样本频率为概率).今从这段时期内任取4天,记其中游客数不低于125人的天数为,求概率
(3)现从上图的共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115且不高于135人的天数为,求的分布列和期望.
当前题号:7 | 题型:解答题 | 难度:0.99
某超市计划销售某种食品,现邀请甲、乙两个商家进场试销10天.两个商家向超市提供的日返利方案如下:甲商家每天固定返利60元,且每卖出一件食品商家再返利3元;乙商家无固定返利,卖出不超出30件(含30件)的食品,每件食品商家返利5元,超出30件的部分每件返利10元. 经统计,试销这10天两个商家每天的销量如图所示的茎叶图(茎为十位数字,叶为个位数字):

(1)现从甲商家试销的10天中随机抽取两天,求这两天的销售量都小于30件的概率;
(2)根据试销10天的数据,将频率视作概率,用样本估计总体,回答以下问题:
①记商家乙的日返利额为X(单位:元),求X的分布列和数学期望;
②超市拟在甲、乙两个商家中选择一家长期销售,如果仅从日返利额的数学期望考虑,请利用所学的统计学知识为超市作出选择,并说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
手机是人们必不可少的工具,极大地方便了人们的生活、工作、学习,现代社会的衣食住行都离不开它.某调查机构调查了某地区各品牌手机的线下销售情况,将数据整理得如下表格:
品牌






其他
销售比







每台利润(元)
100
80
85
1000
70
200
 
 
该地区某商场岀售各种品牌手机,以各品牌手机的销售比作为各品牌手机的售出概率.
(1)此商场有一个优惠活动,每天抽取一个数字,且),规定若当天卖出的第台手机恰好是当天卖出的第一台手机时,则此手机可以打5折.为保证每天该活动的中奖概率小于0.05,求的最小值;(
(2)此商场中一个手机专卖店只出售两种品牌的手机,品牌手机的售出概率之比为,若此专卖店一天中卖出3台手机,其中手机台,求的分布列及此专卖店当天所获利润的期望值.
当前题号:9 | 题型:解答题 | 难度:0.99
《最强大脑》是江苏卫视引进德国节目《SuperBrain》而推出的大型科学竞技真人秀节目.节目筹备组透露挑选选手的方式:不但要对空间感知、照相式记忆进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为“入围学生”,分数小于120分为“未入围学生”.已知男生入围24人,女生未入围80人.
(1)根据题意,填写下面的列联表,并根据列联表判断是否有以上的把握认为脑力测试后是否为“入围学生”与性别有关;
性别
入围人数
未入围人数
总计
男生
24
 
 
女生
 
80
 
总计
 
 
 
 
(2)用分层抽样的方法从“入围学生”中随机抽取11名学生,然后再从这11名学生中抽取3名参加某期《最强大脑》,设抽到的3名学生中女生的人数为,求的分布列及数学期望.
附:,其中.

0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:10 | 题型:解答题 | 难度:0.99