某高中志愿者部有男志愿者6人,女志愿者4人,这些人要参加元旦联欢会的服务工作.从这些人中随机抽取4人负责舞台服务工作,另外6人负责会场服务工作.
(Ⅰ)设为事件:“负责会场服务工作的志愿者中包含女志愿者但不包含男志愿者”,求事件发生的概率.
(Ⅱ)设表示参加舞台服务工作的女志愿者人数,求随机变量的分布列与数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
某工厂两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知生产线生产的产品为合格品的概率分别为.

(1)从生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.
①已知生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.
当前题号:2 | 题型:解答题 | 难度:0.99
一款击鼓小游戏的规则如下:每轮游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每轮游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓是否出现音乐相互独立.
(1)玩三轮游戏,至少有一轮出现音乐的概率是多少?
(2)设每轮游戏获得的分数为,求的分布列及数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
在某项体能测试中,规定每名运动员必需参加且最多两次,一旦第一次测试通过则不再参加第二次测试,否则将参加第二次测试.已知甲每次通过的概率为,乙每次通过的概率为,且甲乙每次是否通过相互独立.
(Ⅰ)求甲乙至少有一人通过体能测试的概率;
(Ⅱ)记为甲乙两人参加体能测试的次数和,求的分布列和期望.
当前题号:4 | 题型:解答题 | 难度:0.99
在某市举行的一次市质检考试中,为了调查考试试题的有效性以及试卷的区分度,该市教研室随机抽取了参加本次质检考试的500名学生的数学考试成绩,并将其统计如下表所示.

根据上表数据统计,可知考试成绩落在之间的频率为
(Ⅰ)求mn的值;
(Ⅱ)已知本欢质检中的数学测试成绩,其中近似为样本的平均数,近似为样本方差,若该市有4万考生,试估计数学成绩介于分的人数;以各组的区间的中点值代表该组的取值现按分层抽样的方法从成绩在以及之间的学生中随机抽取12人,再从这12人中随机抽取4人进行试卷分析,记被抽取的4人中成绩在之间的人数为X,求X的分布列以及期望
参考数据:若,则
当前题号:5 | 题型:解答题 | 难度:0.99
“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.
(1)设事件为 “选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;
(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望
当前题号:6 | 题型:解答题 | 难度:0.99
现有长分别为的钢管各3根(每根钢管的质地均匀、粗细相同且富有不同的编号),从中随机抽取根(假设各钢管被抽取的可能性是均等的,),再将抽取的钢管相接焊成笔直的一根.
(I)当时,记事件,求
(II)当时,若用表示新焊成的钢管的长度(焊接误差不计),求的分布列和数学期望
当前题号:7 | 题型:解答题 | 难度:0.99
时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为天以上且不超过天还车的概率分别为,两人租车都不会超过天.
(1)求甲所付租车费比乙多的概率;
(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
某小组共有10人,利用假期参加义工活动,已知参加义工活动1次的有2人、2次的有4人、3次的有4人.现从这10人中随机选出2人作为该组代表参加座谈会.
(I)设为事件“选出的2人参加义工活动次数之和为4”,求事件发生的概率;
(II)设为选出的2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某球员是当今国内最好的球员之一,在赛季常规赛中,场均得分达分。分球和分球命中率分别为,罚球命中率为.一场比赛分为一、二、三、四节,在某场比赛中该球员每节出手投分的次数分别是,每节出手投三分的次数分别是,罚球次数分别是(罚球一次命中记分)。
(1)估计该球员在这场比赛中的得分(精确到整数);
(2)求该球员这场比赛四节都能投中三分球的概率;
(3)设该球员这场比赛中最后一节的得分为,求的分布列和数学期望。
当前题号:10 | 题型:解答题 | 难度:0.99