- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在中国移动的赞助下,某大学就业部从该大学2018年已就业的
、
两个专业的大学本科毕业生中随机抽取了200人进行月薪情况的问卷调查,经统计发现,他们的月薪收入在3000元到9000元之间,具体统计数据如下表:
将月薪不低于7000元的毕业生视为“高薪收入群体”,并将样本的频率视为总体的概率,巳知该校2018届大学本科毕业生李阳参与了本次调查问卷,其月薪为3500元.
(1)请根据上述表格中的统计数据填写下面的
列联表,并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“高薪收入群体”与所学专业有关?
(2)经统计发现,该大学2018届的大学本科毕业生月薪
(单位:百元)近似地服从正态分布
,其中
近似为样本平均数
(每组数据取区间的中点值).若
落在区间
的左侧,则可认为该大学本科生属“就业不理想”的学生,学校将联系本人,咨询月薪过低的原因,为以后的毕业生就业提供更好的指导.
①试判断李阳是否属于“就业不理想”的学生;
②中国移动为这次参与调查的大学本科毕业生制定了赠送话费的活动,赠送方式为:月薪低于
的获赠两次随机话费,月薪不低于
的获赠一次随机话费,每次赠送的话赞
及对应的概率分别为:
则李阳预期获得的话费为多少元?
附:
,其中,
.


月薪(百元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将月薪不低于7000元的毕业生视为“高薪收入群体”,并将样本的频率视为总体的概率,巳知该校2018届大学本科毕业生李阳参与了本次调查问卷,其月薪为3500元.
(1)请根据上述表格中的统计数据填写下面的

| 非高薪收入群体 | 高薪收入群体 | 合计 |
A专业 | | | |
B专业 | | 20 | 110 |
合计 | | | |
(2)经统计发现,该大学2018届的大学本科毕业生月薪






①试判断李阳是否属于“就业不理想”的学生;
②中国移动为这次参与调查的大学本科毕业生制定了赠送话费的活动,赠送方式为:月薪低于



赠送话费z(单位:元) | 60 | 120 | 180 |
概率 | ![]() | ![]() | ![]() |
则李阳预期获得的话费为多少元?
附:


有甲、乙两队学生参加“知识联想”抢答赛,比赛规则:①主持人依次给出两次提示,第一次提示后答对得2分,第二次提示后答对得1分,没抢到或答错者不得分;②主持人给出第一个提示后开始抢答,第一轮抢答出错失去第二轮答题资格;③每局比赛分两轮,若第一轮抢答者给出正确答案,则此局比赛结束,若第一轮答题者答错,主持人提示后另一队直接答题。如果甲、乙两队抢到答题权机会均等,并且势均力敌,第一个提示后答对概率均为
;第二个提示后答对概率均为
,
为甲队在一局比赛中的分.
(1)求甲在一局比赛中得分的分布列;
(2)若比赛共4局,求甲4局比赛中至少得6分的概率.



(1)求甲在一局比赛中得分的分布列;
(2)若比赛共4局,求甲4局比赛中至少得6分的概率.
手机支付也称为移动支付,是指允许用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.随着信息技术的发展,手机支付越来越成为人们喜欢的支付方式.某机构对某地区年龄在15到75岁的人群“是否使用手机支付”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用手机支付的人数如下所示:(年龄单位:岁)

(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“使用手机支付”与年龄有关?

(2)若从年龄在[55,65),[65,75]的样本中各随机选取2人进行座谈,记选中的4人中“使用手机支付”的人数为X,求随机变量X的分布列和数学期望.
参考数据:

参考公式:
.

(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“使用手机支付”与年龄有关?

(2)若从年龄在[55,65),[65,75]的样本中各随机选取2人进行座谈,记选中的4人中“使用手机支付”的人数为X,求随机变量X的分布列和数学期望.
参考数据:

参考公式:

2018年春节期间,某服装超市举办了一次有奖促销活动,消费每超过800元(含800元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.
(1)若两个顾客均分别消费了800元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?
(1)若两个顾客均分别消费了800元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?
国家放开计划生育政策,鼓励一对夫妇生育2个孩子.在某地区的100000对已经生育了一胎的夫妇中,进行大数据统计得,有100对第一胎生育的是双胞胎或多胞胎,其余的均为单胞胎.在这99900对恰好生育一孩的夫妇中,男方、女方都愿意生育二孩的有50000对,男方愿意生育二孩女方不愿意生育二孩的有
对,男方不愿意生育二孩女方愿意生育二孩的有
对,其余情形有
对,且
.现用样本的频率来估计总体的概率.
(1)说明“其余情形”指何种具体情形,并求出
,
,
的值;
(2)该地区为进一步鼓励生育二孩,实行贴补政策:凡第一胎生育了一孩的夫妇一次性贴补5000元,第一胎生育了双胞胎或多胞胎的夫妇只有一次性贴补15000元.第一胎已经生育了一孩再生育了二孩的夫妇一次性再贴补20000元.这种补贴政策直接提高了夫妇生育二孩的积极性:原先男方或女方中只有一方愿意生育二孩的夫妇现在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫妇仍然不愿意生育二孩.设
为该地区的一对夫妇享受的生育贴补,求
.




(1)说明“其余情形”指何种具体情形,并求出



(2)该地区为进一步鼓励生育二孩,实行贴补政策:凡第一胎生育了一孩的夫妇一次性贴补5000元,第一胎生育了双胞胎或多胞胎的夫妇只有一次性贴补15000元.第一胎已经生育了一孩再生育了二孩的夫妇一次性再贴补20000元.这种补贴政策直接提高了夫妇生育二孩的积极性:原先男方或女方中只有一方愿意生育二孩的夫妇现在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫妇仍然不愿意生育二孩.设


一组数据的最大值与最小值的差称为极差.一袋中有编号为从1到8的8个完全相同的小球,现从中随机抽取4个小球.
(Ⅰ)记取出的这组4个球的编号极差为随机变量
,求
的分布列与期望;
(Ⅱ)若把“取出的一组球与袋中剩下的一组球编号的极差相等”记为事件
,求事件
的概率.
(Ⅰ)记取出的这组4个球的编号极差为随机变量


(Ⅱ)若把“取出的一组球与袋中剩下的一组球编号的极差相等”记为事件


诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“
”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,下表为该水站连续十二周(共三个周期)的诚信数据统计:
(1)计算表中十二周“水站诚信度”的平均数
;
(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量
表示取出的3个数中“水站诚信度”超过
的数据的个数,求随机变量
的分布列和期望;
(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.

| 第一周 | 第二周 | 第三周 | 第四周 |
第一个周期 | ![]() | ![]() | ![]() | ![]() |
第二个周期 | ![]() | ![]() | ![]() | ![]() |
第三个周期 | ![]() | ![]() | ![]() | ![]() |
(1)计算表中十二周“水站诚信度”的平均数

(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量



(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.
中国乒乓球队为了备战2019直通布达佩斯世乒赛,在深圳集训并进行队内选拔.选手
与
三位选手分别进行一场对抗赛,按以往多次比赛的统计,选手
获胜的概率分别为
,且各场比赛互不影响.
(1)若选手至少获胜两场的概率大于
,则该选手入选世乒赛最终名单,否则不予入选,问选手
是否会入选;
(2)求选手
获胜场数
的分布列和数学期望.




(1)若选手至少获胜两场的概率大于


(2)求选手


据《人民网》报道,“美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了.卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的42%来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷
(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;
(2)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过50%的概率是多少?
(3)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.
| | 造林方式 | ||||
地区 | 造林总面积 | 人工造林 | 飞播造林 | 新封山育林 | 退化林修复 | 人工更新 |
内蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 22417 | 15376 | 133 |
重庆 | 226333 | 100600 | | 62400 | 63333 | |
陕西 | 297642 | 184108 | 33602 | 63865 | 16067 | |
甘肃 | 325580 | 260144 | | 57438 | 7998 | |
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | | 159734 | 2629 | |
宁夏 | 91531 | 58960 | | 22938 | 8298 | 1335 |
北京 | 19064 | 10012 | | 4000 | 3999 | 1053 |
(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;
(2)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过50%的概率是多少?
(3)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.
2019年1月4日,据“央视财经”微信公众号消息,点外卖已成为众多消费者一大常规的就餐形式,外卖员也成为了一种职业.为调查某外卖平台外卖员的送餐收入,现从该平台随机抽取100名点外卖的用户进行统计,按送餐距离分类统计得如下频率分布直方图:

将上述调查所得到的频率视为概率.
(1)求
的值,并估计利用该外卖平台点外卖用户的平均送餐距离;
(2)若该外卖平台给外卖员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份5元,超过4千米为远距离,每份9元.
(i)记
为外卖员送一份外卖的收入(单位:元),求
的分布列和数学期望;
(ii)若外卖员一天的收入不低于150元,试利用上述数据估计该外卖员一天的送餐距离至少为多少千米?

将上述调查所得到的频率视为概率.
(1)求

(2)若该外卖平台给外卖员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份5元,超过4千米为远距离,每份9元.
(i)记


(ii)若外卖员一天的收入不低于150元,试利用上述数据估计该外卖员一天的送餐距离至少为多少千米?