我国是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;
(Ⅱ)若该市政府拟采取分层抽样的方法在用水量吨数为之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设为用水量吨数在中的获奖的家庭数,为用水量吨数在中的获奖家庭数,记随机变量,求的分布列和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
某高中社团进行社会实践,对岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:

完成以下问题:
(Ⅰ)补全频率分布直方图并求的值;
(Ⅱ)从岁年龄段的“时尚族”中采用分层抽样法抽取人参加网络时尚达人大赛,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列
当前题号:2 | 题型:解答题 | 难度:0.99
近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:

根据以上数据,绘制了如右图所示的散点图.

(1)根据散点图判断,在推广期内, (c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表l中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表2

已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为,享受8折优惠的概率为,享受9折优惠的概率为.根据所给数据以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用.
参考数据:

其中
当前题号:3 | 题型:解答题 | 难度:0.99
某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:

1
2
3
4
5
6
7

5
8
8
10
14
15
17
 
(1)经过进一步统计分析,发现具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.
参考公式:
当前题号:4 | 题型:解答题 | 难度:0.99
某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以x(单位:盒,)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.

(1)根据直方图估计这个开学季内市场需求量x的平均数和众数;
(2)将y表示为x的函数;
(3)根据频率分布直方图估计利润y不少于1050元的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
高新区某高中德育处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制)的茎叶图如下:

(1)写出该样本的中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;
(2)从所抽取的70分以上的学生中再随机选取4人,记表示测试成绩在80分以上的人数,求的分布列和数学期望
当前题号:6 | 题型:解答题 | 难度:0.99
某果园基地培育出一种特色水果,要在某一季节内采摘一批这种水果销往A市,每售出1吨这种水果获利800元,未售出的水果每吨亏损400元,根据去年市场调研数据统计,该季节A市对这种水果的市场需求量t(单位:吨,100≤t≤150)的频率分布直方图如图所示.现该果园计划采摘140吨这种水果运往A市,经销这种水果的利润Q(单位:元)

(1)求Qt的函数表达式;
(2)视频率为概率,求利润Q的分布列及数学期望.(每组数据以区间的中点值为代表).
当前题号:7 | 题型:解答题 | 难度:0.99
随机抽取某校高一100名学生的期末考试英语成绩(他们的英语成绩都在80分140分之间),将他们的英语成绩(单位:分)分成:六组,得到如图所示的部分频率分布直方图,已知成绩处于内与内的频数之和等于成绩处于内的频数,根据图中的信息,回答下列问题:

(1)求频率分布直方图中未画出的小矩形的面积之和;
(2)求成绩处于内与内的频率之差;
(3)用分层抽样的方法从成绩不低于120分的学生中选取一个容量为6的样本,将该样本看成一个总体,从中任选2人,记这2人中成绩低于130分的人数为,求随机变量的分布列及数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.
分数(分数段)
频数(人数)
频率












合计


 
(1)求表中的值;
(2)按规定,预赛成绩不低于分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为,求的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某医疗器械公司在全国共有个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这个销售点的年销量绘制出如下的频率分布直方图.

(1)完成年销售任务的销售点有多少个?
(2)若用分层抽样的方法从这个销售点中抽取容量为的样本,求该五组,(单位:千台)中每组分别应抽取的销售点数量.
(3)在(2)的条件下,从前两组中的销售点随机选取个,记这个销售点在中的个数为,求的分布列和期望.
当前题号:10 | 题型:解答题 | 难度:0.99