- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重. 大气污染可引起心悸、呼吸困难等心肺疾病。为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如在的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
.
(Ⅰ)请将右面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为
,求
的分布列以及数学期望.
下面的临界值表供参考:
(参考公式
其中
)

(Ⅰ)请将右面的列联表补充完整;
| 患心肺疾病 | 不患心肺疾病 | 合计 |
男 | | 5 | |
女 | 10 | | |
合计 | | | 50 |
(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为


下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式


某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[55,65),[65,75),[75,85),[85,95]分组).
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.
分组 | 频数 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合计 | 20 |
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.

(本小题满分13分)
在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数.
(Ⅰ)写出ξ的分布列(不要求写出计算过程);
(Ⅱ)求数学期望Eξ;
(Ⅲ)求概率P(ξ≥Eξ).
在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数.
(Ⅰ)写出ξ的分布列(不要求写出计算过程);
(Ⅱ)求数学期望Eξ;
(Ⅲ)求概率P(ξ≥Eξ).
为了解某校今年高三毕业班报考飞行员学生的体重情况,将所得的数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右的前三组的频率之比为1:2:3,其中体重在
的有5人.

(1)求该校报考飞行员的总人数;
(2)从该校报考飞行员的体重在
学生中任选3人,设
表示体重超过70
的学生人数,求
的分布列和数学期望.


(1)求该校报考飞行员的总人数;
(2)从该校报考飞行员的体重在




某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:

(1)现从去年的消费金额超过3200元的消费者中随机抽取2人,求至少有1位消费者,其去年的消费者金额在
的范围内的概率;
(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

预计去年消费金额在
内的消费者今年都将会申请办理普通会员,消费金额在
内的消费者都将会申请办理银卡会员,消费金额在
内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:
方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:
普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.
方案二:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立)
请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.

(1)现从去年的消费金额超过3200元的消费者中随机抽取2人,求至少有1位消费者,其去年的消费者金额在

(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

预计去年消费金额在



方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:
普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.
方案二:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立)
请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.
新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在
地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中
.

(Ⅰ)估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)
(Ⅱ)若按照分层抽样从
,
中随机抽取8人,再从这8人中随机抽取4人,记分数在
的人数为
,求
的分布列与数学期望;
(Ⅲ)以频率估计概率,若该研究人员从全国国企员工中随机抽取
人作调查,记成绩在
,
的人数为
,若
,求
的最大值.



(Ⅰ)估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)
(Ⅱ)若按照分层抽样从





(Ⅲ)以频率估计概率,若该研究人员从全国国企员工中随机抽取






唐三彩是中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,制作工艺十分复杂,而且优质品检验异常严格,检验方案是:先从烧制的这批唐三彩中任取 3件作检验,这3件唐三彩中优质品的件数记为
.如果
,再从这批唐三彩中任取3件作检验,若都为优质品,则这批唐三彩通过检验;如果
,再从这批唐三彩中任取1件作检验,若为优质品,则这批唐三彩通过检验;其他情况下,这批唐三彩都不能通过检验.假设这批唐三彩的优质品概率为
,即取出的每件唐三彩是优质品的概率都为
,且各件唐三彩是否为优质品相互独立.
(1)求这批唐三彩通过优质品检验的概率;
(2)已知每件唐三彩的检验费用为100元,且抽取的每件唐三彩都需要检验,对这批唐三彩作质量检验所需的总费用记为
元,求
的分布列及数学期望.





(1)求这批唐三彩通过优质品检验的概率;
(2)已知每件唐三彩的检验费用为100元,且抽取的每件唐三彩都需要检验,对这批唐三彩作质量检验所需的总费用记为


某鲜花店每天制作
、
两种鲜花共
束,每束鲜花的成本为
元,售价
元,如果当天卖不完,剩下的鲜花作废品处理.该鲜花店发现这两种鲜花每天都有剩余,为此整理了过往100天这两种鲜花的日销量(单位:束),得到如下统计数据:
以这100天记录的各销量的频率作为各销量的概率,假设这两种鲜花的日销量相互独立.
(1)记该店这两种鲜花每日的总销量为
束,求
的分布列.
(2)鲜花店为了减少浪费,提升利润,决定调查每天制作鲜花的量
束.以销售这两种鲜花的日总利润的期望值为决策依据,在每天所制鲜花能全部卖完与
之中选其一,应选哪个?





![]() | 48 | 49 | 50 | 51 |
天数 | 25 | 35 | 20 | 20 |
| | | | |
![]() | 48 | 49 | 50 | 51 |
天数 | 40 | 35 | 15 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种鲜花的日销量相互独立.
(1)记该店这两种鲜花每日的总销量为


(2)鲜花店为了减少浪费,提升利润,决定调查每天制作鲜花的量


微信作为一款社交软件已经在支付,理财,交通,运动等各方面给人的生活带来各种各样的便利.手机微信中的“微信运动”,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.
先生朋友圈里有大量好友使用了“微信运动”这项功能.他随机选取了其中40名,记录了他们某一天的走路步数,统计数据如下表所示:

(1)以样本估计总体,视样本频率为概率,在
先生的微信朋友圈里的男性好友中任意选取3名,其中走路步数不低于6000步的有
名,求
的分布列和数学期望;
(2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动鸟人”.根据题意完成下面的
列联表,并据此判断能否有90%以上的把握认为“评定类型”
与“性别”有关?

附:
.


(1)以样本估计总体,视样本频率为概率,在



(2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动鸟人”.根据题意完成下面的

与“性别”有关?

附:


为方便市民出行,倡导低碳出行.某市公交公司推出利用支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,在推广期内采用随机优惠鼓励市民扫码支付乘车.该公司某线路公交车队统计了活动推广期第一周内使用扫码支付的情况,其中
(单位:天)表示活动推出的天次,
(单位:十人次)表示当天使用扫码支付的人次,整理后得到如图所示的统计表1和散点图.
表1:

(1)由散点图分析后,可用
作为该线路公交车在活动推广期使用扫码支付的人次
关于活动推出天次
的回归方程,根据表2的数据,求此回归方程,并预报第8天使用扫码支付的人次(精确到整数).
表2:
表中
,
.
(2)推广期结束后,该车队对此期间乘客的支付情况进行统计,结果如表3.
表3:
统计结果显示,扫码支付中享受5折支付的频率为
,享受7折支付的频率为
,享受9折支付的频率为
.已知该线路公交车票价为1元,将上述频率作为相应事件发生的概率,记随机变量
为在活动期间该线路公交车搭载乘客一次的收入(单位:元),求
的分布列和期望.
参考公式:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
参考数据:
,
,
.


表1:
x | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 |
y | 7 | 12 | 20 | 33 | 54 | 90 | 148 |

(1)由散点图分析后,可用



表2:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
4 | 52 | 3.5 | 140 | 2069 | 112 |
表中


(2)推广期结束后,该车队对此期间乘客的支付情况进行统计,结果如表3.
表3:
支付方式 | 现金 | 乘车卡 | 扫码 |
频率 | 10% | 60% | 30% |
优惠方式 | 无优惠 | 按7折支付 | 随机优惠(见下面统计结果) |
统计结果显示,扫码支付中享受5折支付的频率为





参考公式:对于一组数据





