- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘察了部分几口井,取得了地质资料,进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
(参考公式和计算结果
,
,
,
)
(
)
号旧井位置线性分布,借助前
组数据求得回归直线方程为
,求
的值,并估计
的预报值.
(
)现准备勘探新井
,若通过
,
,
,
号井计算出
,
的值(
,
精确到
)相比与(
)中的
,
,值之差不超过
,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(
)设出油量与勘探深度的比值
不低于
的勘探井为优质井,那么在原有
口井中任意勘探
口井,求勘探优质井数
的分布列与数学期望.
井号Ⅰ | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
坐标![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
钻探深度![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
出油量![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(参考公式和计算结果




(






(
















(






某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为
)进行统计,按
分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在
的数据).

(1)求样本容量
和频率分布直方图中的
(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量
表示所抽取的3株高度在
内的株数,求随机变量
的分布列及数学期望.





(1)求样本容量


(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量



随着共享单车的蓬勃发展,越来越多的人将共享单车作为短距离出行的交通工具.为了解不同年龄的人们骑乘单车的情况,某共享单车公司对某区域不同年龄的骑乘者进行了调查,得到数据如下:
(1)求
关于
的线性回归方程,并估计年龄为40岁人群的骑乘人数;
(2)为了回馈广大骑乘者,该公司在五一当天通过
向每位骑乘者的前两次骑乘分别随机派送一张面额为1元,或2元,或3元的骑行券.已知骑行一次获得1元券,2元券,3元券的概率分别是
,
,
,且每次获得骑行券的面额相互独立.若一名骑乘者五一当天使用了两次该公司的共享单车,记该骑乘者当天获得的骑行券面额之和为
,求
的分布列和数学期望.
参考公式:
,
.
参考数据:
,
.
年龄![]() | 15 | 25 | 35 | 45 | 55 | 65 |
骑乘人数![]() | 95 | 80 | 65 | 40 | 35 | 15 |
(1)求


(2)为了回馈广大骑乘者,该公司在五一当天通过






参考公式:



参考数据:


(本题满分12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上
件产品作为样本称出它们的重量(单位:克),重量的分组区间为
,
,,
,由此得到样本的频率分布直方图,如图所示.

(1)根据频率分布直方图,求重量超过
克的产品数量;
(2)在上述抽取的
件产品中任取
件,设
为重量超过
克的产品数量,求
的分布列;
(3)从该流水线上任取
件产品,求恰有
件产品的重量超过
克的概率.





(1)根据频率分布直方图,求重量超过

(2)在上述抽取的





(3)从该流水线上任取



据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.

(1)求
的值;
(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?
(3)在上述抽取的40个企业中任取2个,设
为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求
的分布列及期望.

(1)求

(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?
(3)在上述抽取的40个企业中任取2个,设


2018年某市政府为了有效改善市区道路交通拥堵状况出台了一系列的改善措施.其中市区公交站点重新布局和建设作为重点项目.市政府相关部门根据交通拥堵情况制定了“市区公交站点重新布局方案”,现准备对该“方案”进行调查,并根据调查结果决定是否启用该“方案”,调查人员分别在市区的各公交站点随机抽取若干市民对该“方案”进行评分,并将结果绘制成如图所示的频率分布直方图.相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,
内认定为满意,不低于
分认定为非常满意;③市民对公交站点布局的满意率不低于
即可启用该“方案”;④用样本的频率代替概率.

(1)从该市市民中随机抽取
人,求恰有
人非常满意该“方案”的概率;并根据所学统计学知识判断该市是否启用该“方案”,说明理由;
(2)已知在评分低于
分的被调查者中,老年人占
,现从评分低于
分的被调查者中按年龄分层抽取
人以便了解不满意的原因,并从中抽取
人担任群众监督员,记
为群众监督员中老年人的人数,求随机变量
的分布列及其数学期望
.




(1)从该市市民中随机抽取


(2)已知在评分低于








某中学为了解高一年级学生身高发育情况,对全校
名高一年级学生按性别进行分层抽样检查,测得身高(单位:
)频数分布表如表
、表
.
表
:男生身高频数分布表
表
:女生身高频数分布表
(1)求该校高一女生的人数;
(2)估计该校学生身高在
的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出
人,设
表示身高在
学生的人数,求
的分布列及数学期望.




表

身高/![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
表

身高/![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求该校高一女生的人数;
(2)估计该校学生身高在

(3)以样本频率为概率,现从高一年级的男生和女生中分别选出




一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表:
(I)根据散点图判断,
与
哪一个适宜作为产卵数
关于温度
的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立
关于
的回归方程;
(Ⅲ)红铃虫是棉区危害较重的害虫,可从农业、物理和化学三个方面进行防治,其中农业方面防治有3种方法,物理方面防治有1种方法,化学方面防治3种方法,现从7种方法中选3种方法进行综合防治(即3种方法不能全部来自同一方面,至少来自两个方面),X表示在综合防治中农业方面的防治方法的种数,求X的分布列及数学期望E(X).
附:可能用到的公式及数据表中(表中
,
=
,
=
,
=
)
对于一组数据
,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
,

温度x/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
产卵个数y/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
(I)根据散点图判断,




(II)根据(I)的判断结果及表中数据,建立


(Ⅲ)红铃虫是棉区危害较重的害虫,可从农业、物理和化学三个方面进行防治,其中农业方面防治有3种方法,物理方面防治有1种方法,化学方面防治3种方法,现从7种方法中选3种方法进行综合防治(即3种方法不能全部来自同一方面,至少来自两个方面),X表示在综合防治中农业方面的防治方法的种数,求X的分布列及数学期望E(X).
附:可能用到的公式及数据表中(表中










![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
27.430 | 3.612 | 81.290 | 147.700 | 2763.764 | 705.592 | 40.180 |
对于一组数据







2018年6月19日凌晨某公司公布的年中促销全天交易数据显示,天猫年中促销当天全天下单金额为1592亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了6月18日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.

(Ⅰ)先求出
的值,再将图中所示的频率分布直方图绘制完整;
(Ⅱ)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
参考数据:
参考公式:
其中
.
(Ⅲ)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在
和
两组所抽中的8人中再随机抽取2人各奖励1000元现金,求
组获得现金奖的数学期望.

网购金额(元) | 频数 | 频率 |
![]() | 5 | 0.05 |
![]() | ![]() | ![]() |
![]() | 15 | 0.15 |
![]() | 25 | 0.25 |
![]() | 30 | 0.3 |
![]() | ![]() | ![]() |
合计 | 100 | 1 |
(Ⅰ)先求出

(Ⅱ)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
| 网龄3年以上 | 网龄不足3年 | 总计 |
购物金额在2000元以上 | 35 | | |
购物金额在2000元以下 | | 20 | |
总计 | | | 100 |
参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


(Ⅲ)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在



某中学举行一次“环保知识竞赛”,全校学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为
分)作为样本进行统计,请根据下面尚未完成并有局部污损的样本的频率分布表和频率分布直方图(如图所示)解决下列问题:
(Ⅰ)写出
,
,
,
的值.
(Ⅱ)在选取的样本中,从竞赛成绩是
分以上(含
分)的同学中随机抽取
名同学到广场参加环保知识的志愿宣传活动,求所抽取的
名同学来自同一组的概率.
(Ⅲ)在(Ⅱ)的条件下,设
表示所抽取的
名同学中来自第
组的人数,求
的分布列及其数学期望.


(Ⅰ)写出




(Ⅱ)在选取的样本中,从竞赛成绩是




(Ⅲ)在(Ⅱ)的条件下,设




组别 | 分组 | 频数 | 频率 |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
合计 | | ![]() | ![]() |
