一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
(12分)(2012•安徽)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量.
(Ⅰ)求X=n+2的概率;
(Ⅰ)设m=n,求X的分布列和均值(数学期望)
当前题号:2 | 题型:填空题 | 难度:0.99
某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:

(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;
(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
甲箱子里装有3个白球个黑球,乙箱子里装有个白球,2个黑球,在一次试验中,分别从这两个箱子里摸出一个球,若它们都是白球,则获奖
(1) 当获奖概率最大时,求的值;
(2)在(1)的条件下,班长用上述摸奖方法决定参加游戏的人数,班长有4次摸奖机会(有放回摸取),当班长中奖时已试验次数即为参加游戏人数,如4次均未中奖,则,求的分布列和
当前题号:4 | 题型:解答题 | 难度:0.99
已知离散型随机变量X的分布列为:
X
0
1
2
P
0.5


 
则常数
当前题号:5 | 题型:填空题 | 难度:0.99
(本小题满分12分)为调查高三学生的视力情况,某高中学生会从全体学生中随机抽取16名学生,经校医用视力表检测得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图,若视力测试结果不低于5.0,则称为“好视力”。
  
(1)写出这组数据的众数和中位数;
(2)从这16人中随机选取3人,求至少有2人是“好视力”的概率;
(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望。
当前题号:6 | 题型:解答题 | 难度:0.99
某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为,且三个公司是否让其面试是相互独立的,记该毕业生得到面试的公司个数,若,则随机变量的数学期望__________.
当前题号:7 | 题型:填空题 | 难度:0.99

某中学高二年级共有8个班,现从高二年级选10名同学组成社区服务小组,其中高二(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).
(1)求选出的3名同学来自不同班级的概率;
(2)设为选出的同学来自高二(1)班的人数,求随机变量的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
某市举行的“国际马拉松赛”,举办单位在活动推介晚会上进行嘉宾现场抽奖活动,抽奖盒中装有6个大小相同的小球,分别印有“快乐马拉松”和“美丽绿城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球(取出后不再放回),若抽到的两个球都印有“快乐马拉松”标志即可获奖.并停止取球;否则继续抽取,第一次取球就抽中获一等奖,第二次取球抽中获二等奖,第三次取球抽中获三等奖,没有抽中不获奖.活动开始后,一位参赛者问:“盒中有几个印有‘快乐马拉松’的小球?”主持人说:“我只知道第一次从盒中同时抽两球,不都是‘美丽绿城行’标志的概率是
(1)求盒中印有“快乐马拉松”小球的个数;
(2)若用表示这位参加者抽取的次数,求的分布列及期望.
当前题号:9 | 题型:解答题 | 难度:0.99
随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关心的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:
年龄





人数
4
5
8
5
3
年龄





人数
6
7
3
5
4
 
经调查年龄在的被调查者中赞成“延迟退休”的人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.
(Ⅰ)求年龄在的被调查者中选取的2人都赞成“延迟退休”的概率;
(Ⅱ)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99