- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为
. 现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即终止. 每枚棋子在每一次被摸出的机会都是等可能的.用
表示取棋子终止时所需的取棋子的次数.
(1)求随机变量
的概率分布列和数学期望
;
(2)求甲取到白棋的概率.


(1)求随机变量


(2)求甲取到白棋的概率.
一个袋子中有3个新球和7个旧球,逐个从袋中取球,直到取到旧球时停止,记X为取球的次数,设袋中每个球被取到的可能性相同,在下面两种情况下分别求出X的分布:
(1)每次取出的球都不放回袋中;
(2)每次取出一球后打比赛,赛完后放回袋中.
(1)每次取出的球都不放回袋中;
(2)每次取出一球后打比赛,赛完后放回袋中.
某医院内科有5名主任医师和15名主治医师,现从中随机地挑选4人组织一个医疗小组,设X是4人中主任医师的人数.
(1)写出X的分布列;
(2)求4人中至少有1名主任医师的概率(精确到0.001).
(1)写出X的分布列;
(2)求4人中至少有1名主任医师的概率(精确到0.001).
每人在一轮投篮练习中最多可投篮4次,现规定,一旦命中即停止该轮练习,否则一直投到第4次为止.已知一选手的投篮命中率为0.7,求一轮练习中,该选手的实际投篮次数X的分布列,并求X的均值.
某工厂的污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为
.经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放.
方案一:逐个化验;
方案二:平均分成两组化验;
方案三:三个样本混在一起化验,剩下的一个单独化验;
方案四:混在一起化验.
化验次数的期望值越小,则方案的越“优”.
(Ⅰ) 若
,求
个A级水样本混合化验结果不达标的概率;
(Ⅱ) 若
,现有
个A级水样本需要化验,请问:方案一,二,四中哪个最“优”?
(Ⅲ) 若“方案三”比“方案四”更“优”,求
的取值范围.

某厂现有个标准水量的A级水池,分别取样、检测. 多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验.混合样本中只要有样本不达标,则混合样本的化验结果必不达标.若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放.
方案一:逐个化验;
方案二:平均分成两组化验;
方案三:三个样本混在一起化验,剩下的一个单独化验;
方案四:混在一起化验.
化验次数的期望值越小,则方案的越“优”.
(Ⅰ) 若


(Ⅱ) 若


(Ⅲ) 若“方案三”比“方案四”更“优”,求

小明计划在8月11日至8月20日期间游览某主题公园,根据旅游局统计数据,该主題公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,
以下为舒适,
为一般,
以上为拥挤),情况如图所示,小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览
天.

(1)求小明连续两天都遇上拥挤的概率;
(2)设
是小明游览期间遇上舒适的天数,求
的分布列和数学期望;
(3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)





(1)求小明连续两天都遇上拥挤的概率;
(2)设


(3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)