- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
空气污染,又称为大气污染,当空气污染指数(单位:
)为
时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为
时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为
时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为
时,空气质量级别为四级,空气质量状况属于中度污染; 2015年1月某日某省
个监测点数据统计如下:
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出
的值,并完成频率分布直方图;
(Ⅱ)统计部门从该省空气质量“良好”和“轻度污染”的两类监测点中采用分层抽样的方式抽取了7个监测点,省环保部门再从中随机选取
个监测点进行调研,记省环保部门“选到空气质量“良好”的城市个数为
”,求
的分布列.






空气污染指数 (单位: ![]() | ![]() | ![]() | ![]() | ![]() |
监测点个数 | 15 | 40 | ![]() | 15 |
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出

(Ⅱ)统计部门从该省空气质量“良好”和“轻度污染”的两类监测点中采用分层抽样的方式抽取了7个监测点,省环保部门再从中随机选取



(本小题满分
分)某校高二年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中的男生人数,求X的分布列。

(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在一次游戏中,
(i)摸出3个白球的概率;
(ii)获奖的概率;
(Ⅱ)求在两次游戏中获奖次数
的分布列.
(Ⅰ)求在一次游戏中,
(i)摸出3个白球的概率;
(ii)获奖的概率;
(Ⅱ)求在两次游戏中获奖次数

某一中学生心理咨询中心服务电话接通率为
,某班3名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,求他们中成功咨询的人数为X的分布列.

(本小题15分)已知从“神七”飞船带回的某种植物种子每粒成功发芽的概率都为
,某植物研究所进行该种子的发芽实验,每次实验种一粒种子, 每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验, 设
表示四次实验结束时实验成功的次数与失败的次数之差的绝对值.
(1)求随机变量
的分布列及
的数学期望
;
(2)记“不等式
的解集是实数集R”为事件A,求事件A发生的概率
.


(1)求随机变量



(2)记“不等式


(满分12分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
。且他们是否破译出密码互不影响。若三人中只有甲破译出密码的概率为
。
(Ⅰ)求
的值;
(Ⅱ)设甲、乙、丙三人中破译出密码的人数为X,求X得分布列和数学期望EX。


(Ⅰ)求

(Ⅱ)设甲、乙、丙三人中破译出密码的人数为X,求X得分布列和数学期望EX。