- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
交强险是车主必须为机动车购买的险种,若普通
座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
某机构为了解某一品牌普通
座以下私家车的投保情况,随机抽取了
辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
以这
辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
,记
为某同学家的一辆该品牌车在第四年续保时的费用,求
的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损
元,一辆非事故车盈利
元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进
辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.


交强险浮动因素和浮动费率比率表 | ||
| 浮动因素 | 浮动比率 |
![]() | 上一年度未发生有责任道路交通事故 | 下浮![]() |
![]() | 上两年度未发生有责任道路交通事故 | 下浮![]() |
![]() | 上三年度未发生有责任道路交通事故 | 下浮![]() |
![]() | 上一个年度发生一次有责任不涉及死亡的道路交通事故 | ![]() |
![]() | 上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮![]() |
![]() | 上一个年度发生有责任交通死亡事故 | 上浮![]() |
某机构为了解某一品牌普通


类型 | ![]() | ![]() | ![]() | ![]() | ![]() |
数量 | ![]() | ![]() | ![]() | ![]() | ![]() |
以这

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,



(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损


①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进

随着共享单车的成功运营,更多的共享产品逐步走人大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷
广元某景点设有共享电动车租车点,共享电动车的收费标准是每小时2元
不足1小时的部分按1小时计算
甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为
;一小时以上且不超过两小时还车的概率分别为
;两人租车时间都不会超过三小时.
Ⅰ
求甲、乙两人所付租车费用相同的概率;
Ⅱ
设甲、乙两人所付的租车费用之和为随机变量
,求
的分布列与数学期望
.












山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为
、
、
、
、
、
、
、
共8个等级。参照正态分布原则,确定各等级人数所占比例分别为
、
、
、
、
、
、
、
.等级考试科目成绩计入考生总成绩时,将
至
等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.
举例说明.
某同学化学学科原始分为65分,该学科
等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属
等级.而
等级的转换分区间为61~70,那么该同学化学学科的转换分为:
设该同学化学科的转换等级分为
,
,求得
.
四舍五入后该同学化学学科赋分成绩为67.
(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布
.
(i)若小明同学在这次考试中物理原始分为84分,等级为
,其所在原始分分布区间为82~93,求小明转换后的物理成绩;
(ii)求物理原始分在区间
的人数;
(2)按高考改革方案,若从全省考生中随机抽取4人,记
表示这4人中等级成绩在区间
的人数,求
的分布列和数学期望.
(附:若随机变量
,则
,
,
)


















举例说明.
某同学化学学科原始分为65分,该学科



设该同学化学科的转换等级分为



四舍五入后该同学化学学科赋分成绩为67.
(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布

(i)若小明同学在这次考试中物理原始分为84分,等级为

(ii)求物理原始分在区间

(2)按高考改革方案,若从全省考生中随机抽取4人,记



(附:若随机变量




设X是一个离散型随机变量,则下列不能成为X的概率分布列的一组数据是( )
A.0,![]() ![]() | B.0.1,0.2,0.3,0.4 |
C.p,1-p(0≤p≤1) | D.![]() ![]() ![]() |
有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在1至
)频数分布表如下(单位:
):
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量
近似服从正态分布
,其中
近似为样本平均数
,
.请估计该种植园内水果质量在
内的百分比;
(2)现在从质量为
,
,
的三组水果中,用分层抽样方法抽取8个水果,再从这8个水果中随机抽取2个.若水果质量在
,
,
的水果每销售一个所获得的利润分别为2元,4元,6元,记随机抽取的2个水果总利润为
元,求
的分布列和数学期望.
附:若
服从正态分布
,则
,
.


分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 30 | 40 | 15 | 5 |
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量






(2)现在从质量为








附:若




盒子中有大小和形状完全相同的
个红球、
个白球和
个黑球,从中不放回地依次抽取
个球.
(1)求在第
次抽到红球的条件下,第
次又抽到红球的概率;
(2)若抽到
个红球记
分,抽到
个白球记
分,抽到
个黑球记
分,设得分为随机变量
,求随机变量
的分布列.




(1)求在第


(2)若抽到







