刷题首页
题库
高中数学
题干
随机变量
X
的分布列如下表,且
E
(
X
)=2,则
D
(2
X
-3)=( )
A.2
B.3
C.4
D.5
上一题
下一题
0.99难度 单选题 更新时间:2018-09-21 02:44:48
答案(点此获取答案解析)
同类题1
设ξ的分布列如下:
ξ
-1
0
1
P
i
P
则P等于( )
A.0
B.
C.
D.不确定
同类题2
在某公司的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如图所示.食堂某天购进了 90个面包,以
(个)(其中
)表示面包的需求量,
(元)表示利润.
(1)根据直方图计算需求量的中位数;
(2)估计利润
不少于100元的概率;
(3)在直方图的需求量分组中,以需求量落入该区间的频率作为需求量在该区间的概率,求
的数学期望.
同类题3
(本小题满分12分)
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
同类题4
甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和数学期望.
同类题5
在某社区举办的“
亚运知识有奖问答比赛”中,甲、乙、丙三人同时回答一道有关亚运知识的问题,已知甲回答这道题对的概率为
,甲、丙两人都回答错的概率是
,乙、丙两人都回答对的概率是
;
(1)求乙、丙两人各自回答这道题对的概率;
(2)用
表示回答该题对的人数,求
的分布列和
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
离散型随机变量的均值
离散型随机变量的方差