- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
袋中有20个大小相同的球,其中标号为0的有10个,标号为n的有n个(n =1,2,3,4).现从袋中任取一球,X表示所取球的标号.求X的分布列、数学期望和方差.
小华与另外
名同学进行“手心手背”游戏,规则是:
人同时随机选择手心或手背其中一种手势,规定相同手势人数更多者每人得
分,其余每人得
分.现
人共进行了
次游戏,记小华
次游戏得分之和为
,则
为( )









A.![]() | B.![]() | C.![]() | D.![]() |
某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为
,第二关每次闯过的概率均为
.假设他不放弃每次闯关机会,且每次闯关互不影响.
(1)求甲恰好闯关3次才闯关成功的概率;
(2)记甲闯关的次数为
,求随机变量
的分布列和期望.。


(1)求甲恰好闯关3次才闯关成功的概率;
(2)记甲闯关的次数为


为了研究学生的数学核心素养与抽象能力(指标
)、推理能力(指标
)、建模能力(指标
)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标
的值评定学生的数学核心素养,若
,则数学核心素养为一级;若
,则数学核心素养为二级;若
,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:
(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;
(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为
,求随机变量
的分布列及其数学期望.







学生编号 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;
(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为


某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为
,乙车间3台机器每天发生概率分别为
.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.
(1)求乙车间每天机器发生故障的台数的分布列;
(2)由于节能减排,甲乙两个车间必须停产一个,以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.


(1)求乙车间每天机器发生故障的台数的分布列;
(2)由于节能减排,甲乙两个车间必须停产一个,以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.
某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除颜色外均相同.
(Ⅰ)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;
(Ⅱ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记得到红球的次数为
,求
的分布列;
(Ⅲ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取100次,得到几次红球的概率最大?只需写出结论.
(Ⅰ)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;
(Ⅱ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记得到红球的次数为


(Ⅲ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取100次,得到几次红球的概率最大?只需写出结论.
已知某口袋中装有除颜色外其余完全相同的2个白球和3个黑球,现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球). 记换好后袋中的白球个数为
,则
的数学期望
=___,方差
=___ .



