《山东省高考改革试点方案》规定:从年高考开始,高考物理、化学等六门选考科目的考生原始成绩从高到低划分为八个等级.参照正态分布原则,确定各等级人数所占比例分别为.选考科目成绩计入考生总成绩时,将等级内的考生原始成绩,依照等比例转换法则分别转换到八个分数区间,得到考生的等级成绩.

某校级学生共人,以期末考试成绩为原始成绩转换了本校的等级成绩,为学生合理选科提供依据,其中物理成绩获得等级的学生原始成绩统计如下
成绩
93
91
90
88
87
86
85
84
83
82
人数
1
1
4
2
4
3
3
3
2
7
 
(1)从物理成绩获得等级的学生中任取名,求恰好有名同学的等级分数不小于的概率;
(2)待到本级学生高考结束后,从全省考生中不放回的随机抽取学生,直到抽到名同学的物理高考成绩等级为结束(最多抽取人),设抽取的学生个数为,求随机变量的数学期望(注: ).
当前题号:1 | 题型:解答题 | 难度:0.99
如果,则使取最大值时的值为(  )
A.5或6B.6或7C.7或8D.以上均错
当前题号:2 | 题型:单选题 | 难度:0.99
世界那么大,我想去看看,每年高考结束后,处于休养状态的高中毕业生旅游动机强烈,旅游可支配收入日益增多,可见高中毕业生旅游是一个巨大的市场.为了解高中毕业生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某市的1000名毕业生进行问卷调查,并把所得数据列成如下所示的频数分布表:
组别
[0,20)
[20,40)
[40,60)
[60,80)
[80,100)
频数
2
250
450
290
8
 
(1)求所得样本的中位数(精确到百元);
(2)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该市共有高中毕业生35000人,试估计有多少位同学旅游费用支出在 8100元以上;
(3)已知样本数据中旅游费用支出在[80,100)范围内的8名学生中有5名女生,3名男生, 现想选其中3名学生回访,记选出的男生人数为,求的分布列与数学期望.
附:若,则
当前题号:3 | 题型:解答题 | 难度:0.99
装有除颜色外完全相同的6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.
(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;
(2)求出赢钱(即时)的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
某射手每次射击击中目标的概率是,且各次射击的结果互不影响,假设这名射手射击3次.
(1)求恰有2次击中目标的概率;
(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记为射手射击3次后的总得分,求的概率分布列与数学期望
当前题号:5 | 题型:解答题 | 难度:0.99
某销售公司在当地两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数
8
9
10
11
频数
20
40
20
20
 
以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.
(1)求的分布列;
(2)以销售食品利润的期望为决策依据,在之中选其一,应选哪个?
当前题号:6 | 题型:解答题 | 难度:0.99
设离散型随机变量的分布列如图,则等于    (   )
A.B.C.D.
当前题号:7 | 题型:单选题 | 难度:0.99
设某项试验的成功率是失败率的2倍,用随机变量描述一次试验的成功次数,则_______.
当前题号:8 | 题型:填空题 | 难度:0.99
某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖,且每次摸奖最多只能获得一个奖级.

(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额的分布列.
当前题号:9 | 题型:解答题 | 难度:0.99
某社区举办北京奥运知识宣传活动,现场的“抽卡有奖游戏”特别引人注目,游戏规则是:盒子中装有8张形状大小相同的精美卡片,卡片上分别印有“奥运福娃”或“奥运会徽”,要求4人一组参加游戏,参加游戏的4人从盒子中轮流抽取卡片,一次抽2张,抽取后不放回,直到4人中一人一次抽到2张“奥运福娃” 卡才能得到奖并终止游戏.
(1)游戏开始之前,一位高中生问:盒子中有几张“奥运会徽” 卡?主持人说:若从盒中任抽2张卡片不都是“奥运会徽” 卡的概率为,请你回答有几张“奥运会徽”卡呢?
(2)现有甲、乙、丙、丁4人参加游戏,约定甲、乙、丙、丁依次抽取.用表示4人中的某人获奖终止游戏时总共抽取卡片的次数,求的概率分布及的数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99