- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为评估
设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
经计算,样本的平均值
,标准差
,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为
,并根据以下不等式进行评判(
表示相应事件的频率):
①
;②
;③
,评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断
设备的性能等级.
(2)将直径小于等于
的零件或直径大于等于
的零件认定为是“次品”,将直径小于等于
的零件或直径大于等于
的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数
的数学期望.

直径/![]() | 78 | 79 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 93 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值


(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为


①




(2)将直径小于等于





某项研究性课题由一个团队完成,团队由一个主持人和若干个助手组成,助手分固定和临时两种,每个固定助手的工资为3000元/月,当固定助手人手不够时,需要招聘临时助手,每个临时助手的工资为4000元/月,现在搜集并整理了以往的20个团队需要的助手数;得到如图柱状图.

记n为提供给一个团队的固定助手数(提供的每个固定助手均按3000元/月的标准支付工资).x为一个团队需要的助手数,y为支付给一个团队的助手的月工资总额(单位:元)
(Ⅰ)当n=4时,求y关于x的函数关系式;
(Ⅱ)假设这20个团队中的每一个团队都提供4个固定助手或都提供5个固定助手,分别计算这20个团队每月支付给助手的工资总额,以此作为决策依据,判断每一个团队提供4个固定助手划算还是提供5个固定助手划算;
(Ⅲ)以这20个团队需要助手数的频率代替一个团队需要助手数的概率,若40个团队中需要5个以下(不包括5个)助手数的团队个数记为X,求E(X).

记n为提供给一个团队的固定助手数(提供的每个固定助手均按3000元/月的标准支付工资).x为一个团队需要的助手数,y为支付给一个团队的助手的月工资总额(单位:元)
(Ⅰ)当n=4时,求y关于x的函数关系式;
(Ⅱ)假设这20个团队中的每一个团队都提供4个固定助手或都提供5个固定助手,分别计算这20个团队每月支付给助手的工资总额,以此作为决策依据,判断每一个团队提供4个固定助手划算还是提供5个固定助手划算;
(Ⅲ)以这20个团队需要助手数的频率代替一个团队需要助手数的概率,若40个团队中需要5个以下(不包括5个)助手数的团队个数记为X,求E(X).
为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
(1)由频数分布表可以认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
;
(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:
(i)得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
(ii)每次获赠的随机话费和对应的概率为:
现市民小王要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列及数学期望.
附:①
;
②若
,则
,
,
.
组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分




(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:
(i)得分不低于


(ii)每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 | ![]() | ![]() |
现市民小王要参加此次问卷调查,记


附:①

②若




甲、乙、丙三人独立的对某一技术难题进行攻关.甲能攻克的概率为
,乙能攻克的概率为
,丙能攻克的概率为
;
(1)求这一技术难题被攻克的概率;
(2)若该技术难题未被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励6万元.奖励规则如下:若只有一人攻克,则此人获得全部奖金6万元;若只有2人攻克,则此二人均分奖金,每人3万元;若三人均攻克,则每人2万元.在这一技术难题被攻克的前提下,设甲拿到的奖金数为
,求
的分布列和数学期望.



(1)求这一技术难题被攻克的概率;
(2)若该技术难题未被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励6万元.奖励规则如下:若只有一人攻克,则此人获得全部奖金6万元;若只有2人攻克,则此二人均分奖金,每人3万元;若三人均攻克,则每人2万元.在这一技术难题被攻克的前提下,设甲拿到的奖金数为


在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的100人的得分统计结果如下表所示:

(1)由频数分布表可以大致认为,此次问卷调查的得分
,
近似为这100人得分的平均值.(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求
;
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:

现有市民甲参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列与数学期望.
附:参考数据:
①
;
②
;
③若
,则
.

(1)由频数分布表可以大致认为,此次问卷调查的得分



(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于


②每次获赠的随机话费和对应的概率为:

现有市民甲参加此次问卷调查,记


附:参考数据:
①

②

③若



某贫困县辖有15个小镇中有9个小镇交通比较方便,有6个不太方便
现从中任意选取10个小镇,其中有X个小镇交通不太方便,下列概率中等于
的是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
某发电厂新引进4台发电机,已知每台发电机一个月中至多出现1次故障,且每台发电机是否出现故障时相互独立的,出现故障时需1名工人进行维修,每台发电机出现故障的概率为
.
(1)若一个月中出现故障的发电机台数为
,求
的分布列;
(2)该发电厂至少有多少名工人,才能保证每台发电机在任何时刻同时出现故障时,能及时进行维修的概率不少于90%?
(3)已知一名工人每月只有维修1台发电机的能力,每台发电机不出现故障或出现故障能及时维修,就使该厂产生2万元的利润,否则将不产生利润,若该发电厂现有2名工人,要使求该发电厂每月获利的均值不少于6万元,则该发电厂每月需支付给每位工人的工资最多为多少万元?

(1)若一个月中出现故障的发电机台数为


(2)该发电厂至少有多少名工人,才能保证每台发电机在任何时刻同时出现故障时,能及时进行维修的概率不少于90%?
(3)已知一名工人每月只有维修1台发电机的能力,每台发电机不出现故障或出现故障能及时维修,就使该厂产生2万元的利润,否则将不产生利润,若该发电厂现有2名工人,要使求该发电厂每月获利的均值不少于6万元,则该发电厂每月需支付给每位工人的工资最多为多少万元?