- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.则摸球次数
的数学期望为 .

在某社区举办的“
亚运知识有奖问答比赛”中,甲、乙、丙三人同时回答一道有关亚运知识的问题,已知甲回答这道题对的概率为
,甲、丙两人都回答错的概率是
,乙、丙两人都回答对的概率是
;
(1)求乙、丙两人各自回答这道题对的概率;
(2)用
表示回答该题对的人数,求
的分布列和




(1)求乙、丙两人各自回答这道题对的概率;
(2)用



如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,……,依次类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是
.记小球遇到第
行第
个障碍物(从左至右)上顶点的概率为
.

(Ⅰ)求
的值,并猜想
的表达式(不必证明);
(Ⅱ)已知
,设小球遇到第6行第
个障碍物(从左至右)上顶点时,得到的分数为
,试求
的分布列及数学期望.





(Ⅰ)求


(Ⅱ)已知




电视台举办猜奖活动,参与者需先后回答两道选择题:问题
有四个选项,问题
有六个选项,但都只有一个选项是正确的.问题
回答正确可得奖金
元,问题
回答正确可得奖金
元.
活动规定:①参与者可任意选择答题顺序;②如果第一个问题回答错误则该参与者猜奖活动中止.
一个参与者在回答问题前,对这两个问题都很陌生,因而准备靠随机猜测回答问题,试确定回答问题的顺序,使获奖金额的期望值较大.






活动规定:①参与者可任意选择答题顺序;②如果第一个问题回答错误则该参与者猜奖活动中止.
一个参与者在回答问题前,对这两个问题都很陌生,因而准备靠随机猜测回答问题,试确定回答问题的顺序,使获奖金额的期望值较大.
袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用X表示得分数.
(1)求X的概率分布列;
(2)求X的数学期望

某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.
(I)设所选5人中女医生的人数为
,求
的分布列及数学期望;
(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.
(I)设所选5人中女医生的人数为


(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.
某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.
(I)设所选5人中女医生的人数为


(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.
一个口袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数分分布列与期望.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数分分布列与期望.