- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
.(本小题满分12分)
鲜花扫墓渐流行,清明节期间,吉安某鲜花店某种鲜花的进货价为每束10元,销售价为每束20元,若在清明节期间内没有售完,则在清明节营业结束后以每束5元的价格处理,据前5年的有关资料统计,这种鲜花的需求量X(束)服从以下分布:
(1)求a的值;
(2)当进货量为20,30束时,分别求出该店获利润的期望值;
(3)该店今年清明节前进该种鲜花多少束为宜?
鲜花扫墓渐流行,清明节期间,吉安某鲜花店某种鲜花的进货价为每束10元,销售价为每束20元,若在清明节期间内没有售完,则在清明节营业结束后以每束5元的价格处理,据前5年的有关资料统计,这种鲜花的需求量X(束)服从以下分布:
X | 20 | 30 | 40 | 50 |
P | 0.20 | 0.35 | a | 0.15 |
(1)求a的值;
(2)当进货量为20,30束时,分别求出该店获利润的期望值;
(3)该店今年清明节前进该种鲜花多少束为宜?
甲乙两人进行射击训练,每人射击两次,若甲乙两人一次射击命中目标的概率分别为
和
,且每次射击是否命中相互之间没有影响.
(I)求两人恰好各命中一次的概率;
(II)求两人击中目标的总次数
的分布列和期望.


(I)求两人恰好各命中一次的概率;
(II)求两人击中目标的总次数

老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格,某同学只能背诵其中的6篇,试求:
(1)抽到他能背诵的课文的数量的分布列;
(2)他能及格的概率.
(1)抽到他能背诵的课文的数量的分布列;
(2)他能及格的概率.
在一个有奖问答的电视节目中,参赛选手顺序回答A1、A2、A3三个问题,答对各个问题所获奖金(单位:元)对应如下表:
当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答A1、A2、A3的概率分别为
,正确回答一个问题后,选择继续回答下一个问题的概率均为
,且各个问题回答正确与否互不影响.
(Ⅰ)按照答题规则,求该选手A1回答正确但所得奖金为零的概率;
(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.
A1 | A2 | A3 |
1000 | 2000 | 3000 |
当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答A1、A2、A3的概率分别为


(Ⅰ)按照答题规则,求该选手A1回答正确但所得奖金为零的概率;
(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.
投到“时尚生活”杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位初审专家都未通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则,不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3,各位专家独立评审.
(1)求投到该杂志的1篇稿件被录用的概率.
(2)若某人投到该杂志3篇稿件,求他被录用稿件篇数
的分布列及期望值.
(1)求投到该杂志的1篇稿件被录用的概率.
(2)若某人投到该杂志3篇稿件,求他被录用稿件篇数

一个口袋中有大小相同的2个白球和4个黑球,每次从袋中随机地摸出1个球,并换入1只相同大小的黑球,这样继续下去,求:
(1)第2次摸出的恰好是白球的概率;
(2)摸2次摸出白球的个数
的分布列与数学期望.
(1)第2次摸出的恰好是白球的概率;
(2)摸2次摸出白球的个数

国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):
以各组数据的中间值代表这组数据的平均值
,将频率视为概率.
(1)根据以往经验,可以认为实心球投掷距离
近似服从正态分布
,其中
近似为样本平均值,
近似为样本方差
,若规定:
时,测试成绩为“良好”,请估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比;
(2)现在从实心球投掷距离在
,
之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,在被抽取的3人中,记实心球投掷距离在
内的人数为
,求
的概率分布及数学期望.
附:若
服从
,则
,
.
分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 22 | 40 | 20 | 8 |
以各组数据的中间值代表这组数据的平均值

(1)根据以往经验,可以认为实心球投掷距离






(2)现在从实心球投掷距离在





附:若



