- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某闯关游戏规则是:先后掷两枚骰子,将此实验重复





求第一轮闯关成功的概率;
如果游戏只进行到第四轮,第四轮后不论游戏成功与否,都终止游戏,记进行的轮数为随机变量


“低碳经济”是促进社会可持续发展的推进器,某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为
,
,
;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和b(其中a+b=1).
(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金﹣投资资金),求ξ的概率分布及均值(数学期望)E(ξ);
(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.



(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金﹣投资资金),求ξ的概率分布及均值(数学期望)E(ξ);
(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.
南昌市教育局组织中学生足球比赛,共有实力相当的8支代表队(含有一中代表队,二中代表队)参加比赛,比赛规则如下:
第一轮:抽签分成四组,每组两队进行比赛,胜队进入第二轮,第二轮:将四队分成两组,每组两队进行比赛,胜队进入第三轮,第三轮:两队进行决赛,胜队获得冠军.现记ξ=0表示整个比赛中一中代表队与二中代表队没有相遇,ξ=i表示恰好在第i轮比赛时一中代表队,二中代表队相遇(i=1,2,3).
(1)求ξ的分布列;
(2)求Eξ.
第一轮:抽签分成四组,每组两队进行比赛,胜队进入第二轮,第二轮:将四队分成两组,每组两队进行比赛,胜队进入第三轮,第三轮:两队进行决赛,胜队获得冠军.现记ξ=0表示整个比赛中一中代表队与二中代表队没有相遇,ξ=i表示恰好在第i轮比赛时一中代表队,二中代表队相遇(i=1,2,3).
(1)求ξ的分布列;
(2)求Eξ.
现有A,B两个项目,投资A项目100万元,一年后获得的利润为随机变量X1(万元),根据市场分析,X1的分布列为:
投资B项目100万元,一年后获得的利润X2(万元)与B项目产品价格的调整(价格上调或下调)有关,已知B项目产品价格在一年内进行2次独立的调整,且在每次调整中价格下调的概率都是p(0≤p<1).
经专家测算评估B项目产品价格的下调与一年后获得相应利润的关系如下表:
(Ⅰ)求X1的方差D(X1);
(Ⅱ)求X2的分布列;
(Ⅲ)若p=0.3,根据投资获得利润的差异,你愿意选择投资哪个项目?
(参考数据:1.22×0.49+0.72×0.42+9.82×0.09=9.555).
X1 | 12 | 11.8 | 11.7 |
P | ![]() | ![]() | ![]() |
投资B项目100万元,一年后获得的利润X2(万元)与B项目产品价格的调整(价格上调或下调)有关,已知B项目产品价格在一年内进行2次独立的调整,且在每次调整中价格下调的概率都是p(0≤p<1).
经专家测算评估B项目产品价格的下调与一年后获得相应利润的关系如下表:
B项目产品价格一年内下调次数X(次) | 0 | 1 | 2 |
投资100万元一年后获得的利润X2(万元) | 13 | 12.5 | 2 |
(Ⅰ)求X1的方差D(X1);
(Ⅱ)求X2的分布列;
(Ⅲ)若p=0.3,根据投资获得利润的差异,你愿意选择投资哪个项目?
(参考数据:1.22×0.49+0.72×0.42+9.82×0.09=9.555).
袋中装有13个红球和
个白球,这些红球和白球除了颜色不同之外,其余都相同,从袋中同时取两个球.
(1)若取出的是2个红球的概率等于取出的是一红一白两个球的概率的3倍,试求
的值;
(2) 某公司的某部门有21位职员,公司将进行抽奖活动,在(1)的条件下,规定:每个职员都从袋中同时取两个球,然后放回袋中,摇匀再给别人抽奖,若某人取出的两个球是一红一白时,则中奖(奖金1000元);否则,不中奖(也发鼓励奖金100元).试求此公司在这次抽奖活动中所发奖金总额的期望值.

(1)若取出的是2个红球的概率等于取出的是一红一白两个球的概率的3倍,试求

(2) 某公司的某部门有21位职员,公司将进行抽奖活动,在(1)的条件下,规定:每个职员都从袋中同时取两个球,然后放回袋中,摇匀再给别人抽奖,若某人取出的两个球是一红一白时,则中奖(奖金1000元);否则,不中奖(也发鼓励奖金100元).试求此公司在这次抽奖活动中所发奖金总额的期望值.
在某次考试中共有12道选择题,每道选择题有4个选项,其中只有一个是正确的,评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题给出一个答案,并已确定有9道题的答案是正确的,而其余题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意只能乱猜,试求出该考生;
(1)选择题得60分的概率;
(2)选择题所得分数
的数学期望.
(1)选择题得60分的概率;
(2)选择题所得分数

某教研机构准备举行一次高中数学新课程研讨会,拟邀请50名使用不同版本的一线教师参加,使用不同版本教材的教师人数如下表所示
(I)从这50名教师中随机选出2名教师发言,求第一位发言的教师所使用版本是北大师大版的概率;
(II)设使用北师大版的5名教师中有3名男教师,2名女教师,若随机选出2名用北师大版的教师发言,求抽到男教师个数的分布列和期望.
版本 | 人教A版 | 人教B版 | 苏教版 | 北师大版 |
人数 | 20 | 15 | 10 | 5 |
(I)从这50名教师中随机选出2名教师发言,求第一位发言的教师所使用版本是北大师大版的概率;
(II)设使用北师大版的5名教师中有3名男教师,2名女教师,若随机选出2名用北师大版的教师发言,求抽到男教师个数的分布列和期望.
为了拓展网络市场,腾讯公司为
用户推出了多款
应用,如“
农场”、“
音乐”、“
读书”等.某校研究性学习小组准备举行一次“
使用情况”调查,从高二年级的一、二、三、四班中抽取10名学生代表参加,抽取不同班级的学生人数如下表所示:
(I)从这10名学生中随机选出2名,求这2人来自相同班级的概率;
(Ⅱ) 假设在某时段,三名学生代表甲、乙、丙准备分别从
农场、
音乐、
读书中任意选择一项,他们选择
农场的概率都为
;选择
音乐的概率都为
;选择
读书的概率都为
;他们的选择相互独立.设在该时段这三名学生中选择
读书的总人数为随机变量
,求随机变量
的分布列及数学期望
.






班级 | 一班 | 二班 | 三班 | 四班 |
人数 | 2 | 3人 | 4人 | 1人 |
(I)从这10名学生中随机选出2名,求这2人来自相同班级的概率;
(Ⅱ) 假设在某时段,三名学生代表甲、乙、丙准备分别从













某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
![]() | 视觉记忆能力 | ||||
偏低 | 中等 | 偏高 | 超常 | ||
听觉 记忆 能力 | 偏低 | 0 | 7 | 5 | 1 |
中等 | 1 | 8 | 3 | ![]() | |
偏高 | 2 | ![]() | 0 | 1 | |
超常 | 0 | 2 | 1 | 1 |
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为

(1)试确定


(2)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;
(3)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为


