- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型的特征
- 几何概型计算公式
- + 均匀随机数的产生
- 产生均匀随机数的变换
- 设计计算机模拟实验
- 用随机模拟法估算几何概率
- 随机模拟的其他应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如下图,在边长为a的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m,n,则图形Ω面积的估计值为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如下图,利用随机模拟的方法可以估计图中由曲线y=
与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0~1的均匀随机数,a=RAND( ),b=RAND( );②做变换,令x=2a,y=2b;③产生N个点(x,y),并统计落在阴影内的点(x,y)的个数
,已知某同学用计算器做模拟试验结果,当N=1 000时,
=332,则据此可估计S的值为____.




关于圆周率
,数学发展史上出现过许多有创意的求法,最著名的属普丰实验和查理实验受其启发,我们可以设计一个算法框图来估计
的值
如图
若电脑输出的
的值为29,那么可以估计
的值约为











A.![]() | B.![]() | C.![]() | D.![]() |
我们可以用随机模拟的方法估计
的值,如图程序框图表示其基本步骤
函数RAND是产生随机数的函数,它能随机产生
内的任何一个实数
若输出的结果为521,则由此可估计
的近似值为










A.![]() | B.![]() | C.![]() | D.![]() |
关于圆周率
,数学发展史上出现过许多很有创意的求法,如注明的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请120名同学每人随机写下一个都小于1的正实数对
;再统计两数能与1构成钝角三角形三边的数对
的个数
;最后再根据统计数
估计
的值,假如统计结果是
,那么可以估计
的值约为( )









A.![]() | B.![]() | C.![]() | D.![]() |
向边长为
的正方形内随机投
粒豆子,其中
粒豆子落在到正方形的顶点
的距离不大于
的区域内(图中阴影区域),由此可估计
的近似值为______.(保留四位有效数字)






