- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型的特征
- 几何概型计算公式
- + 均匀随机数的产生
- 产生均匀随机数的变换
- 设计计算机模拟实验
- 用随机模拟法估算几何概率
- 随机模拟的其他应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数y=f(x)在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)0~1区间上的均匀随机数x1,x2,…,xN和y1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足yi≤f(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得S的近似值为_____. 

将[0,1]内的均匀随机数a1转化为[-3,4]内的均匀随机数a,需要实施的变换为( )
A.a=7a1 | B.a=7a1+3 |
C.a=7a1-3 | D.a=4a1 |
利用计算机随机模拟方法计算图中阴影面积(如图所示).
第一步:利用计算机产生两组均匀随机数x,y,其中-1<x<1,0<y<1;
第二步:拟(x,y)为点的坐标.
共做此试验N次.若落在阴影部分的点的个数为N1,则可以估计阴影部分的面积S.
例如,做了2 000次试验,即N=2 000,模拟得到N1=1 396,所以S≈_____.
第一步:利用计算机产生两组均匀随机数x,y,其中-1<x<1,0<y<1;
第二步:拟(x,y)为点的坐标.
共做此试验N次.若落在阴影部分的点的个数为N1,则可以估计阴影部分的面积S.
例如,做了2 000次试验,即N=2 000,模拟得到N1=1 396,所以S≈_____.

把[0,1]内的均匀随机数x分别转化为[0,4]和[-4,1]内的均匀随机数y1,y2,需实施的变换分别为( )
A.y1=-4x,y2=5x-4 | B.y1=4x-4,y2=4x+3 |
C.y1=4x,y2=5x-4 | D.y1=4x,y2=4x+3 |