- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型-长度型
- + 几何概型-面积型
- 几何概型-体积型
- 可化为面积型的几何概型
- 几何概型-角度型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
是
上一点,分别以
为直径作半圆,从
作
,与半圆相交于
,
,
,在整个图形中随机取一点,则此点取自图中阴影部分的概率是( )










A.![]() | B.![]() | C.![]() | D.![]() |
如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1000个点,其中落入黑色部分的有498个点,据此可估计黑色部分的面积约为( )


A.11 | B.10 | C.9 | D.8 |
下图来自古希腊数学家希波克拉底所研究的几何图形,此图由一个半圆面和一个四分之一圆面组合而成,阴影部分是两个图形叠加而成.在此图内任取一点,此点取自阴影部分的概率记为P,则P等于( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图是数学界研究的弓月形的一种,
是以
为直径的圆的内接正六边形的三条邻边,四个半圆的直径分别是
,在整个图形中随机取一点,则此点取自阴影部分的概率是( )





A.![]() | B.![]() | C.![]() | D.![]() |
为提高衡水市的整体旅游服务质量,市旅游局举办了旅游知识竞赛,参赛单位为本市内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游3名,其中高级导游1名.从这6名导游中随机选择2人参加比赛.
(1)求选出的2名都是高级导游的概率;
(2)为了进一步了解各旅游协会每年对本地经济收入的贡献情况,经多次统计得到,甲旅游协会对本地经济收入的贡献范围是
(单位:万元),乙旅游协会对本地经济收入的贡献范围是
(单位:万元),求甲旅游协会对本地经济收入的贡献不低于乙旅游协会对本地经济收入的贡献概率.
(1)求选出的2名都是高级导游的概率;
(2)为了进一步了解各旅游协会每年对本地经济收入的贡献情况,经多次统计得到,甲旅游协会对本地经济收入的贡献范围是


(江西省景德镇市第一中学等盟校2018届高三第二次联考)下图是2002年8月中国成功主办的国际数学家大会的会标,是我们古代数学家赵爽为证明勾股定理而绘制的,在我国最早的数学著作《周髀算经》中有详细的记载.若图中大正方形
的边长为5,小正方形的边长为2,现作出小正方形的内切圆,向大正方形所在区域随机投掷
个点,有
个点落在中间的圆内,由此可估计
的近似值为






A.![]() | B.![]() |
C.![]() | D.![]() |
某射击运动员进行射击训练,前三次射击在靶上的着弹点
刚好是边长为
的等边三角形的三个顶点.
(Ⅰ)第四次射击时,该运动员瞄准
区域射击(不会打到
外),则此次射击的着弹点距
的距离都超过
的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间
内,调整一下后,又连打三枪,其成绩(环数)都在区间
内.现从这
次射击成绩中随机抽取两次射击的成绩(记为
和
)进行技术分析.求事件“
”的概率.


(Ⅰ)第四次射击时,该运动员瞄准




(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间






