- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型-长度型
- + 几何概型-面积型
- 几何概型-体积型
- 可化为面积型的几何概型
- 几何概型-角度型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近年来,随着信息技术的发展,网络购物已经成为人们现代生活的一部分,人们足不出户就可以买到心仪的商品,小王在某网站上确定订单后,快递员电话通知于周五早上7:30至8:30送货到家,如果小王这一天离开家的时间为早上8:00至9:00,那么在他离开家之前拿到邮件的概率为__________.
如图所示,在扇形AOB中,∠AOB=
,圆C内切于扇形AOB,若随机在扇形AOB内投一点,则该点落在圆C外的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
某商场举行节日促销活动,消费满一定数额即可获得一次抽奖机会,抽奖这可以从以下两种方式中任选一种进行抽奖.
抽奖方式①:让抽奖者随意转动如图所示的圆盘,圆盘停止后指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为
,边界忽略不计)即中奖.
抽奖方式②:让抽奖者从装有3个白球和3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即中奖.
假如你是抽奖者,为了让中奖的可能性大,你应该选择哪一种抽奖方式?并说明理由.
抽奖方式①:让抽奖者随意转动如图所示的圆盘,圆盘停止后指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为

抽奖方式②:让抽奖者从装有3个白球和3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即中奖.
假如你是抽奖者,为了让中奖的可能性大,你应该选择哪一种抽奖方式?并说明理由.

圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线可称为“等宽曲线”. 事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯
命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1): 画一个等边三角形
,分别以
为圆心,边长为半径,作圆弧
,这三段圆弧围成的图形就是鲁列斯曲边三角形. 它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).

图1 图2
在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为( )






图1 图2
在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
如图所示为一个
的国际象棋棋盘,其中每个格子的大小都一样,向棋盘内随机抛撒100枚豆子,则落在黑格内的豆子总数最接近( )



A.40 | B.50 | C.60 | D.64 |