- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- 古典概型
- + 几何概型
- 几何概型的特征
- 几何概型计算公式
- 均匀随机数的产生
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角
,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )



A.![]() | B.![]() | C.![]() | D.![]() |
小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于
,则周末去看电影;若此点到圆心的距离小于
,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 ( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知一只蚂蚁在底面半径为
,高为
的圆锥侧面爬行,若蚂蚁在圆锥侧面上任意一点出现的可能性相等,且将蚂蚁看作一个点,则蚂蚁距离圆锥顶点超过
的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
如图,半径为
的圆
内有一内接正六边形
,正六边形中的黑色部分和白色部分关于圆的圆心
成中心对称.在圆内随机取一点,则此点取自黑色部分的概率为________.




