- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- + 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙、丙3位大学生同时应聘某个用人单位的职位,甲、乙两人只有一人被选中的概率为
,两人都被选中的概率为
,丙被选中的概率为
,且三人各自能否被选中互不影响.
(1)求3人同时被选中的概率;
(2)求恰好有2人被选中的概率;
(3)求3人中至少有1人被选中的概率.



(1)求3人同时被选中的概率;
(2)求恰好有2人被选中的概率;
(3)求3人中至少有1人被选中的概率.
有2个人在一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的.
(1)求这两个人在不同层离开电梯的概率;
(2)求这两个人在同一层离开电梯的概率
(1)求这两个人在不同层离开电梯的概率;
(2)求这两个人在同一层离开电梯的概率
某高校的入学面试中有3道难度相当的题目,李明答对每道题目的概率都是0.6若每位面试者共有三次机会,一旦某次答对抽到的题目,则面试通过,否则就一直抽题到第3次为止,用Y表示答对题目,用N表示没有答对题目,假设对抽到的不同题目能否答对是独立的,那么
(1)请列出树状图并填写样本点,并写出样本空间;
(2)求李明第二次答题通过面试的概率;
(3)求李明最终通过面试的概率.
(1)请列出树状图并填写样本点,并写出样本空间;
(2)求李明第二次答题通过面试的概率;
(3)求李明最终通过面试的概率.
掷一枚骰子的试验中,出现各点的概率均为
,事件
表示“出现小于5的偶数点”,事件
表示“出现小于5的点数”,则一次试验中,事件
(
表示事件
的对立事件)发生的概率为









A.![]() | B.![]() | C.![]() | D.![]() |
甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.
(1)若以
表示和为6的事件,求
;
(2)现连玩三次,若以
表示甲至少赢一次的事件,
表示乙至少赢两次的事件,试问
与
是否为互斥事件?为什么?
(3)这种游戏规则公平吗?试说明理由.
(1)若以


(2)现连玩三次,若以




(3)这种游戏规则公平吗?试说明理由.
生产同一种产品,甲机床的废品率为0.04,乙机床的废品率为0.05,从甲,乙机床生产的产品中各任取1件,求:
(1)至少有1件废品的概率;
(2)恰有1件废品的概率.
(1)至少有1件废品的概率;
(2)恰有1件废品的概率.
甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率是
,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率是
,甲、乙两台机床加工的零件都是一等品的概率是
.
(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
(2)从甲、乙、丙三台机床加工的零件中各取一个检验,求至少有一个一等品的概率;



(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
(2)从甲、乙、丙三台机床加工的零件中各取一个检验,求至少有一个一等品的概率;
某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为
,数学为
,英语为
,问一次考试中
(Ⅰ)三科成绩均未获得第一名的概率是多少?
(Ⅱ)恰有一科成绩未获得第一名的概率是多少



(Ⅰ)三科成绩均未获得第一名的概率是多少?
(Ⅱ)恰有一科成绩未获得第一名的概率是多少