某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元不足1小时的部分按1小时计算现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.
1若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费恰为6元的概率;
若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
甲、乙两人下棋,已知甲获胜的概率为0.3,且两人下成和棋的概率为0.5,则乙不输的概率为______________
当前题号:2 | 题型:填空题 | 难度:0.99
某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.

(Ⅰ)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;
(Ⅱ)在抽取的学生中,从成绩为[95,100]的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率;
(Ⅲ)记高一、高二两个年级知识竞赛的平均分分别为,试估计的大小关系.(只需写出结论)
当前题号:3 | 题型:解答题 | 难度:0.99
我国古代有着辉煌的数学研究成果.《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这l0部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为(   ).
A.B.C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,
方案一:每满200元减50元;
方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)
红球个数
3
2
1
0
实际付款
半价
7折
8折
原价
 
(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;
(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?
当前题号:5 | 题型:解答题 | 难度:0.99
某蔬菜批发商分别在甲、乙两市场销售某种蔬菜(两个市场的销售互不影响),己知该蔬菜每售出1吨获利500元,未售出的蔬菜低价处理,每吨亏损100 元.现统计甲、乙两市场以往100个销售周期该蔬菜的市场需求量的频数分布,如下表:
 
以市场需求量的频率代替需求量的概率.设批发商在下个销售周期购进吨该蔬菜,在 甲、乙两市场同时销售,以(单位:吨)表示下个销售周期两市场的需求量,(单位:元)表示下个销售周期两市场的销售总利润.
(Ⅰ)当时,求的函数解析式,并估计销售利润不少于8900元的槪率;
(Ⅱ)以销售利润的期望为决策依据,判断应选用哪—个.
当前题号:6 | 题型:解答题 | 难度:0.99
一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率为,且是相互独立的,则灯亮的概率是(  )
A.B.C.D.
当前题号:7 | 题型:单选题 | 难度:0.99
某商场准备在今年的“五一假”期间对顾客举行抽奖活动,举办方设置了两种抽奖方案,方案的中奖率为,中奖可以获得分;方案的中奖率为,中奖可以获得分;未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,并凭分数兑换奖品,
(1)若顾客甲选择方案抽奖,顾客乙选择方案抽奖,记他们的累计得分为,若的概率为,求
(2)若顾客甲、顾客乙两人都选择方案或都选择方案进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?
当前题号:8 | 题型:解答题 | 难度:0.99
甲、乙两射手在同样条件下击中目标的概率分别为0.6与 0.7,则至少有一人击中目标的概率为________
当前题号:9 | 题型:填空题 | 难度:0.99
随着节能减排意识深入人心以及共享单车在饶城的大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车.为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
每周使用次数
1次
2次
3次
4次
5次
6次及以上

4
3
3
7
8
30

6
5
4
4
6
20
合计
10
8
7
11
14
50
 
(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成列表(见答题卡),并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关?
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.
①求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;
②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为X,求X的分布列及数学期望.
附表及公式:
 
0.15
0.10
0.05
0.025
0.010
0.005
0.001
 
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:10 | 题型:解答题 | 难度:0.99