- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- + 互斥事件
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛掷一枚质地均匀的骰子,落地后记事件A为“奇数点向上”,事件B为“偶数点向上”,事件C为“2点或4点向上”则在上述事件中,互斥但不对立的共有



A.3对 | B.2对 | C.1对 | D.0对 |
把颜色分别为红、黑、白的3个球随机地分给甲、乙、丙3人,每人分得1个球.事件“甲分得白球”与事件“乙分得白球”是( )
A.对立事件 | B.不可能事件 |
C.互斥事件 | D.必然事件 |
(多选)某小组有三名男生和两名女生,从中任选两名去参加比赛,则下列各对事件中为互斥事件的是( )
A.恰有一名男生和全是男生 | B.至少有一名男生和至少有一名女生 |
C.至少有一名男生和全是男生 | D.至少有一名男生和全是女生 |
如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为
.

(1)求游戏结束时小华在第2个台阶的概率;
(2)求
的分布列和数学期望.


(1)求游戏结束时小华在第2个台阶的概率;
(2)求

下列说法正确的是 ( )
A.已知购买一张彩票中奖的概率为![]() ![]() |
B.互斥事件一定是对立事件; |
C.如图,直线![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
D.若样本![]() ![]() ![]() ![]() |
某学校高一 、高二 、高三三个年级共有
名教师,为调查他们的备课时间情况,通过分层
抽样获得了
名教师一周的备课时间 ,数据如下表(单位 :小时):
(1)试估计该校高三年级的教师人数 ;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是
(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为
,表格中的数据平均数记为
,试判断
与
的大小. (结论不要求证明)

抽样获得了

高一年级 | ![]() | ![]() | ![]() | ![]() | ![]() | | | |
高二年级 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
高三年级 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)试估计该校高三年级的教师人数 ;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是





经销商第一年购买某工厂商品的单价为
(单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:
为了研究该商品购买单价的情况,为此调查并整理了
个经销商一年的销售额,得到下面的柱状图.

已知某经销商下一年购买该商品的单价为
(单位:元),且以经销商在各段销售额的频率作为概率.
(1)求
的平均估计值.
(2)为了鼓励经销商提高销售额,计划确定一个合理的年度销售额
(单位:万元),年销售额超过
的可以获得红包奖励,该工厂希望使
的经销商获得红包,估计
的值,并说明理由.

上一年度 销售额/万元 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
商品单价/元 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
为了研究该商品购买单价的情况,为此调查并整理了


已知某经销商下一年购买该商品的单价为

(1)求

(2)为了鼓励经销商提高销售额,计划确定一个合理的年度销售额




在某公司举行的一次真假游戏的有奖竞猜中,设置了“科技”和“生活”这两类试题,规定每位职工最多竞猜3次,每次竞猜的结果相互独立.猜中一道“科技”类试题得4分,猜中一道“生活”类试题得2分,两类试题猜不中的都得0分.将职工得分逐次累加并用X表示,如果X的值不低于4分就认为通过游戏的竞猜,立即停止竞猜,否则继续竞猜,直到竞猜完3次为止.竞猜的方案有以下两种:方案1:先猜一道“科技”类试题,然后再连猜两道“生活”类试题;
方案2:连猜三道“生活”类试题.
设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.
(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.
(2)职工甲选择哪一种方案所得平均分高?并说明理由.
方案2:连猜三道“生活”类试题.
设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.
(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.
(2)职工甲选择哪一种方案所得平均分高?并说明理由.