- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- + 互斥事件
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一袋中装有除颜色外完全相同的5个白球,3个黄球,从中有放回地摸球,用
表示第一次摸得黄球,
表示第二次摸得白球,则事件
与
( )




A.是相互独立事件 | B.不是相互独立事件 | C.是互斥事件 | D.是对立事件 |
袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸得白球”,如果“第二次摸得白球”记为B,“第二次摸得黑球”记为C,那么事件A与B,A与C间的关系是( )
A.A与B,A与C均相互独立 | B.A与B相互独立,A与C互斥 |
C.A与B,A与C均互斥 | D.A与B互斥,A与C相互独立 |
某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:
(1)若获奖人数不超过2人的概率为0.56,求x的值;
(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.
获奖人数 | 0 | 1 | 2 | 3 | 4 | 5 |
概率 | 0.1 | 0.16 | x | y | 0.2 | z |
(1)若获奖人数不超过2人的概率为0.56,求x的值;
(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.
一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷一次,设事件
表示向上的一面出现奇数点,事件
表示向上的一面出现的点数不超过3,事件
表示向上的一面出现的点数不小于4,则( )



A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
从10个事件中任取一个事件,若这个事件是必然事件的概率为0.2,是不可能事件的概率为0.3,则这10个事件中随机事件的个数是( )
A.3 | B.4 | C.5 | D.6 |
为庆祝建国70周年,校园文化节举行有奖答题活动,现有A,B两种题型,从A类题型中抽取1道,从B类题型中抽取2道回答,答对3道题获新华书店面值为15元的图书代金券,答对2道题获面值为10元的图书代金券,答对1道题获面值为5元的图书代金券,没有答对获面值为1元的图书代金券(作为鼓励).甲同学参加此活动答对A类题的概率为
,答对B类题的概率为
.
(Ⅰ)求甲答对1道题的概率;
(Ⅱ)设甲参加一次活动所获图书代金券的面值为随机变量X,求X的分布列和数学期望.


(Ⅰ)求甲答对1道题的概率;
(Ⅱ)设甲参加一次活动所获图书代金券的面值为随机变量X,求X的分布列和数学期望.
小明需要从甲城市编号为1-14的14个工厂或乙城市编号为15-32的18个工厂中选择一个去实习,设“小明在甲城市实习”为事件A,“小明在乙城市且编号为3的倍数的工厂实习”为事件B,则P(A+B)=( )
A.![]() | B.![]() | C.![]() | D.![]() |
从1,2,3,4,5中任取两个数,下列事件中是互斥事件但不是对立事件的是( )
A.至少有一个是奇数和两个都是奇数 | B.至少有一个是奇数和两个都是偶数 |
C.至少有一个奇数和至少一个偶数 | D.恰有一个偶数和没有偶数 |
某超市收银台排队等候付款的人数及其相应概率如下:
则至少有两人排队的概率为( )
排队人数 | 0 | 1 | 2 | 3 | 4 | ![]() |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
则至少有两人排队的概率为( )
A.0.16 | B.0.26 | C.0.56 | D.0.74 |