- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某篮球运动员在同一条件下进行投篮练习,结果如下表所示.
(1)填写上表中的进球频率;
(2)这位运动员投篮一次,进球的概率大约是多少?
投篮次数n/次 | 8 | 10 | 15 | 20 | 30 | 40 | 50 |
进球次数m/次 | 6 | 8 | 12 | 17 | 25 | 32 | 38 |
进球频率![]() | | | | | | | |
(1)填写上表中的进球频率;
(2)这位运动员投篮一次,进球的概率大约是多少?
某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和出现绿灯的概率都是
.从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是
,出现绿灯的概率是
;若前次出现绿灯,则下一次出现红灯的概率是
,出现绿灯的概率是
.求:
(1)第二次闭合后出现红灯的概率;
(2)三次发光后,出现一次红灯,两次绿灯的概率.





(1)第二次闭合后出现红灯的概率;
(2)三次发光后,出现一次红灯,两次绿灯的概率.
一袋中装有5个白球和3个红球,现从袋中往外取球,每次任取一个,取出后记下颜色,若为红色停止,若为白色则继续抽取,停止时从袋中抽取的白球的个数为随机变量
,则


A.![]() | B.![]() |
C.![]() | D.![]() |
盒子中仅有4个白球和5个黑球,从中任意取出一个球.
(1)“取出的球是黄球”是什么事件?它的概率是多少?
(2)“取出的球是白球”是什么事件?它的概率是多少?
(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?
(4)设计一个用计算器或计算机模拟上面取球的试验,并模拟100次,估计“取出的球是白球”的概率.
(1)“取出的球是黄球”是什么事件?它的概率是多少?
(2)“取出的球是白球”是什么事件?它的概率是多少?
(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?
(4)设计一个用计算器或计算机模拟上面取球的试验,并模拟100次,估计“取出的球是白球”的概率.
已知盒中有5个红球,3个白球,从盒中任取2个球,则下列说法正确的是( )
A.全是白球与全是红球是对立事件 |
B.没有白球与至少有1个白球是对立事件 |
C.只有1个白球与只有1个红球是互斥关系 |
D.全是红球与有1个红球是包含关系 |
某市一公交线路某区间内共设置六个站点,分别为A0,A1,A2,A3,A4,A5,现有甲乙两人同时从A0站点上车,且他们中的每个人在站点Ai(i=1,2,3,4,5)下车是等可能的.
(1)求甲在A2站点下车的概率;
(2)甲,乙两人不在同一站点下车的概率.
(1)求甲在A2站点下车的概率;
(2)甲,乙两人不在同一站点下车的概率.
某校为调查期末考试中高一学生作弊情况,随机抽取了200名高一学生进行调查,设计了两个问题,问题1:你出生月份是奇数吗?问题2:期末考试中你作弊了吗?然后让受调查的学生每人掷一次币,出现“正面朝上”则回答问题1,出现“反面朝上”则回答问题2,答案只能填“是”或“否”不能弃权.结果统计后得到了53个“是”的答案,则估计有百分之几的学生作弊了?
下列对各事件发生的概率判断正确的是( )
A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是![]() ![]() |
B.三人独立地破译一份密码,他们能单独译出的概率分别为![]() ![]() ![]() ![]() |
C.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为![]() |
D.设两个独立事件A和B都不发生的概率为![]() ![]() |
某射击手在同一条件下进行射击训练,结果如下:
(1)求出表中击中靶心的各个频率值;
(2)这个射击手射击一次,击中靶心的概率可估计为多少?
射击次数n | 10 | 20 | 50 | 100 | 200 | 500 |
击中靶心次数m | 8 | 19 | 44 | 92 | 178 | 455 |
击中靶心频率![]() | | | | | | |
(1)求出表中击中靶心的各个频率值;
(2)这个射击手射击一次,击中靶心的概率可估计为多少?