- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
驾驶员“科目一”考试,又称科目一理论考试、驾驶员理论考试,是机动车驾驶证考核的一部分.根据《机动车驾驶证申领和使用规定》,考试内容包括驾车理论基础、道路安全法律法规、地方性法规等相关知识.考试形式为上机考试100道题,90分及以上过关.考试规则是:若上午第一次考试未通过,当场可以立刻补考一次;如果补考还没过,那么出了考场缴费后,下午可以再考,若还未通过可再补考一次.已知小王每一次通过考试的概率均为0.5,且每一场考试与补考是否通过相互独立,则当天小王通过“科目一”考试的概率为________ .
眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为
,乙队中3人答对的概率分别为
,
,
,且各人回答正确与否相互之间没有影响.
(1)分别求甲队总得分为0分;2分的概率;
(2)求甲队得2分乙队得1分的概率.




(1)分别求甲队总得分为0分;2分的概率;
(2)求甲队得2分乙队得1分的概率.
若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为
A.0.3 | B.0.4 | C.0.6 | D.0.7 |
某电视台的夏日水上闯关节目中的前四关的过关率分别为
,
,
,
,只有通过前一关才能进入下一关,其中,第三关有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为()




A.![]() | B.![]() | C.![]() | D.![]() |
某地气象局预报说,明天本地降水概率为80%,你认为下面哪一个解释能表明气象局的观点( )
A.明天本地有80%的时间下雨,20%的时间不下雨 |
B.明天本地有80%的区域下雨,20%的区域不下雨 |
C.明天本地下雨的机会是80% |
D.气象局并没有对明天是否下雨作出有意义的预报 |
某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同.每次游戏需要从这两个箱子里面各随机摸出两个球.
(1)设在一次游戏中,摸出红球的个数为
,求
分布列.
(2)若在一次游戏中,摸出的红球不少于2个,则获奖.
①求一次游戏中,获奖的概率;
②若每次游戏结束后,将球放回原来的箱子,设4次游戏中获奖次数为
,求
的数学期望
.
(1)设在一次游戏中,摸出红球的个数为


(2)若在一次游戏中,摸出的红球不少于2个,则获奖.
①求一次游戏中,获奖的概率;
②若每次游戏结束后,将球放回原来的箱子,设4次游戏中获奖次数为



抽查10件产品,设“至少抽到2件次品”为事件
,则
的对立事件是( )


A.至多抽到2件次品 | B.至多抽到2件正品 |
C.至少抽到2件正品 | D.至多抽到一件次品 |
某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________ .
在新高考改革中,打破文理分科的“
(
选
)”模式:我省实施“
”,“
”代表语文、数学、外语
门高考必考科目,“
”是物理、历史两科选一科,这里称之为主选,“
”是化学、生物、政治、地理四科选两科,这里称为辅选,其中每位同学选哪科互不影响且等可能.
(Ⅰ)甲、乙两同学主选和辅选的科目都相同的概率;
(Ⅱ)有一个
人的学习小组,主选科目是物理,问:这
人中辅选生物的人数是一个随机变量
,求
的分布列及期望.








(Ⅰ)甲、乙两同学主选和辅选的科目都相同的概率;
(Ⅱ)有一个



