某商品促销活动设计了一个摸奖游戏:在一个口袋中装有4个红球和6个白球,这些球除颜色外完全相同,顾客一次从中摸出3个球,若3个都是白球则无奖励,若有1个红球则奖励10元购物券,若有2个红球则奖励20元购物券,若3个都是红球则奖励30元购物券.
(Ⅰ)求中奖的概率;
(Ⅱ)求顾客摸奖一次获得购物券奖励的平均值.
当前题号:1 | 题型:解答题 | 难度:0.99
某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是
A.AB为对立事件B.BC为互斥事件
C.CD是对立事件D.BD为互斥事件
当前题号:2 | 题型:单选题 | 难度:0.99
一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是(   )
A.0.3B.0.55C.0.7D.0.75
当前题号:3 | 题型:单选题 | 难度:0.99
一个袋子里装有大小形状完全相同的个小球,其编号分别为甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为,则停止取球;若编号不为,则将该球放回袋子中.由乙随机取出个小球后甲再从袋子中剩下的个小球随机取出一个,然后停止取球,则甲能取到号球的概率为__________.
当前题号:4 | 题型:填空题 | 难度:0.99
某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:
方案一:逐瓶检验,则需检验次;
方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.
(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;
(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.
若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.
(i)若的期望相等.试求关于的函数解析式;
(ii)若,且采用方案二总次数的期望小于采用方案一总次数的期望.求的最大值.
参考数据:
当前题号:5 | 题型:解答题 | 难度:0.99
甲、乙两人进行象棋比赛,已知甲胜乙的概率为0.5,乙胜甲的概率为0.3,甲乙两人平局的概率为0.2.若甲乙两人比赛两局,且两局比赛的结果互不影响,则乙至少赢甲一局的概率为( )
A.0. 36B.0. 49C.0. 51D.0. 75
当前题号:6 | 题型:单选题 | 难度:0.99
乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.
当前题号:7 | 题型:填空题 | 难度:0.99
从装有个红球和个黒球的口袋内任取个球,那么互斥而不对立的两个事件是()
A.至少有一个黒球与都是黒球B.至少有一个黒球与恰有个黒球
C.至少有一个黒球与至少有个红球D.恰有个黒球与恰有个黒球
当前题号:8 | 题型:单选题 | 难度:0.99
在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.1,0.2,0.3,0.4,则下列说法正确的是
A.A+B与C是互斥事件,也是对立事件B.B+C与D不是互斥事件,但是对立事件
C.A+C与B+D是互斥事件,但不是对立事件D.B+C+D与A是互斥事件,也是对立事件
当前题号:9 | 题型:单选题 | 难度:0.99
总决赛采用7场4胜制,2018年总决赛两支球队分别为勇士和骑士,假设每场比赛勇士获胜的概率为0.6,骑士获胜的概率为0.4,且每场比赛的结果相互独立,则恰好5场比赛决出总冠军的概率为_______
当前题号:10 | 题型:填空题 | 难度:0.99