- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商品促销活动设计了一个摸奖游戏:在一个口袋中装有4个红球和6个白球,这些球除颜色外完全相同,顾客一次从中摸出3个球,若3个都是白球则无奖励,若有1个红球则奖励10元购物券,若有2个红球则奖励20元购物券,若3个都是红球则奖励30元购物券.
(Ⅰ)求中奖的概率;
(Ⅱ)求顾客摸奖一次获得购物券奖励的平均值.
(Ⅰ)求中奖的概率;
(Ⅱ)求顾客摸奖一次获得购物券奖励的平均值.
某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是
A.A和B为对立事件 | B.B和C为互斥事件 |
C.C与D是对立事件 | D.B与D为互斥事件 |
一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是( )
A.0.3 | B.0.55 | C.0.7 | D.0.75 |
一个袋子里装有大小形状完全相同的
个小球,其编号分别为
甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为
,则停止取球;若编号不为
,则将该球放回袋子中.由乙随机取出
个小球后甲再从袋子中剩下的
个小球随机取出一个,然后停止取球,则甲能取到
号球的概率为__________ .







某医药开发公司实验室有
瓶溶液,其中
瓶中有细菌
,现需要把含有细菌
的溶液检验出来,有如下两种方案:
方案一:逐瓶检验,则需检验
次;
方案二:混合检验,将
瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌
,则
瓶溶液全部不含有细菌
;若检验结果含有细菌
,就要对这
瓶溶液再逐瓶检验,此时检验次数总共为
.
(1)假设
,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌
的概率;
(2)现对
瓶溶液进行检验,已知每瓶溶液含有细菌
的概率均为
.
若采用方案一.需检验的总次数为
,若采用方案二.需检验的总次数为
.
(i)若
与
的期望相等.试求
关于
的函数解析式
;
(ii)若
,且采用方案二总次数的期望小于采用方案一总次数的期望.求
的最大值.
参考数据:




方案一:逐瓶检验,则需检验

方案二:混合检验,将







(1)假设


(2)现对



若采用方案一.需检验的总次数为


(i)若





(ii)若


参考数据:

甲、乙两人进行象棋比赛,已知甲胜乙的概率为0.5,乙胜甲的概率为0.3,甲乙两人平局的概率为0.2.若甲乙两人比赛两局,且两局比赛的结果互不影响,则乙至少赢甲一局的概率为( )
A.0. 36 | B.0. 49 | C.0. 51 | D.0. 75 |
乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为
,乙发球得1分的概率为
,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________ .


从装有
个红球和
个黒球的口袋内任取
个球,那么互斥而不对立的两个事件是()



A.至少有一个黒球与都是黒球 | B.至少有一个黒球与恰有![]() |
C.至少有一个黒球与至少有![]() | D.恰有![]() ![]() |
在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.1,0.2,0.3,0.4,则下列说法正确的是
A.A+B与C是互斥事件,也是对立事件 | B.B+C与D不是互斥事件,但是对立事件 |
C.A+C与B+D是互斥事件,但不是对立事件 | D.B+C+D与A是互斥事件,也是对立事件 |
