- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 完善列联表
- 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表:
(Ⅰ)由以上统计数据填下面2×2列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;
(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.
参考公式:K2
,其中n=a+b+c+d.
参考数据:
月收入(单位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上统计数据填下面2×2列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;
| 月收入低于55百元的人数 | 月收入不低于55百元的人数 | 合计 |
赞成 | | | |
不赞成 | | | |
合计 | | | |
(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.
参考公式:K2

参考数据:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了
名机动车司机,得到以下统计:在
名男性司机中,开车时使用手机的有
人,开车时不使用手机的有
人;在
名女性司机中,开车时使用手机的有
人,开车时不使用手机的有
人.
(1)完成下面的
列联表,并判断是否有
的把握认为开车时使用手机与司机的性别有关;
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为
,若每次抽检的结果都相互独立,求
的分布列和数学期望
.
参考公式与数据:
参考数据:
参考公式
,其中
.







(1)完成下面的


| 开车时使用手机 | 开车时不使用手机 | 合计 |
男性司机人数 | | | |
女性司机人数 | | | |
合计 | | | |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为



参考公式与数据:
参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式


为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了
人,他们年龄的频数分布及支持“生育二胎”人数如下表:
(1)由以上统计数据填下面
列联表,并问是否有
的把握认为以
岁为分界点对“生育二胎放开”政策的支持度有差异;
(2)若对年龄在
的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:
,
,
.

年龄 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
支持“生二胎” | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)由以上统计数据填下面



| 年龄不低于![]() | 年龄低于![]() | 合计 |
支持 | ![]() | ![]() | |
不支持 | ![]() | ![]() | |
合计 | | | |
(2)若对年龄在

参考数据:



九龙坡区围绕大力发展高新技术产业、推进高质量城市管理、创造高品质人民生活,建设宜居、宜业、宜游的“三高九龙坡、三宜山水城”的总愿景,全面开启新时代的新梦想、新征程.热心网友“我是坡民”通过问卷,对近五年游客满意度排在前三名的区内景点进行了统计,结果如表一.根据此表,他又对游览过热门景点重庆动物园的100名游客进行满意度调查,给景点打分,满分为100分,得分超过90分的为“特别满意”,其余为“基本满意”,将受调查游客年龄为12岁及以下的人群称为儿童,得到
列联表,如表二:
表一:
表二:
(1)完成表二的列联表,并判断是否有99.9%的把握认为调查对象是否“特别满意”与是否是儿童有关;
(2)为安排节假日出行,“我是坡民”从表一的5个年份中随机选择2个年份,再从这2个年份排名前三的景点中任意选择1个景点,记选择出的景点中“重庆动物园”出现的次数为
,求
的分布列及数学期望
.
参考公式
.
参考数据:
,
,
,
.

表一:
年份景点排名 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
1 | 重庆动物园 | 重庆动物园 | 龙门阵景区 | 彩云湖 | 彩云湖 |
2 | 华岩景区 | 华岩景区 | 重庆动物园龙 | 龙门阵景区 | 黄桷坪涂鸦街 |
3 | 巴国城 | 海兰云天 | 黄桷坪涂鸦街 | 华岩景区 | 重庆动物园 |
表二:
| 特别满意 | 基本满意 | 合计 |
儿童 | 40 | | |
非儿童 | | 30 | |
合计 | 60 | | 100 |
(1)完成表二的列联表,并判断是否有99.9%的把握认为调查对象是否“特别满意”与是否是儿童有关;
(2)为安排节假日出行,“我是坡民”从表一的5个年份中随机选择2个年份,再从这2个年份排名前三的景点中任意选择1个景点,记选择出的景点中“重庆动物园”出现的次数为



参考公式

参考数据:




某学校为调查高二年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高(单位:
)在
内的男生人数有16人.

(Ⅰ)求在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的
列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
附:参考公式和临界值表:
,



(Ⅰ)求在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的

| ![]() | ![]() | 总计 |
男生人数 | | | |
女生人数 | | | |
总计 | | | |
附:参考公式和临界值表:

![]() | 5.024 | 6.635 | 7.879 | 10.828 |
![]() | 0.025 | 0.010 | 0.005 | 0.001 |
某中学为研究学生的身体素质与体育锻炼时间的关系,对该校300名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟).
将学生日均体育锻炼时间在
的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的
列联表;
(2)通过计算判断,是否能在犯错误的概率不超过0.05的前提下认为“锻炼达标”与性别有关?
参考公式:
,其中
.
临界值表
平均每天锻炼的时间/分钟 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
总人数 | 34 | 51 | 59 | 66 | 65 | 25 |
将学生日均体育锻炼时间在

(1)请根据上述表格中的统计数据填写下面的

| 锻炼不达标 | 锻炼达标 | 合计 |
男 | | | |
女 | 40 | 160 | |
合计 | | | |
(2)通过计算判断,是否能在犯错误的概率不超过0.05的前提下认为“锻炼达标”与性别有关?
参考公式:


临界值表
![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
一项针对某一线城市30~50岁都市中年人的消费水平进行调查,现抽查500名(200名女性,300名男性)此城市中年人,最近一年内购买六类高价商品(电子产品、服装、手表、运动与户外用品、珠宝首饰、箱包)的金额(万元)的频数分布表如下:
(1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.
(2)把购买六类高价商品的金额不低于5000元的中年人称为“高收入人群”,根据已知条件完成
列联表,并据此判断能否有95%的把握认为“高收入人群”与性别有关?
参考公式:
,其中
参考附表:
女性 | 金额 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性 | 金额 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 45 | 75 | 90 | 60 | 30 |
(1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.
(2)把购买六类高价商品的金额不低于5000元的中年人称为“高收入人群”,根据已知条件完成

| 高收入人群 | 非高收入人群 | 合计 |
女性 | | 60 | |
男性 | 180 | | |
合计 | | | 500 |
参考公式:


参考附表:
![]() | 0.10 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
2019年电商“双十一”大战即将开始.某电商为了尽快占领市场,抢占今年“双十一”的先机,对成都地区年龄在15到75岁的人群“是否网上购物”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)
(1)若以45岁为分界点,根据以上统计数据填写下面的
列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“网上购物”与年龄有关?
(2)若从年龄在
,
的样本中各随机选取2人进行座谈,记选中的4人中“使用网上购物”的人数为
,求随机变量
的分布列和数学期望.
参考数据:
参考公式:
年龄段 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
购物人数 | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45岁为分界点,根据以上统计数据填写下面的

| 年龄低于45岁 | 年龄不低于45岁 | 总计 |
使用网上购物 | | | |
不使用网上购物 | | | |
总计 | | | |
(2)若从年龄在




参考数据:
![]() | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:

某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:
).经统计,高度在区间
内,将其按
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图,其中高度不低于
的树苗为优质树苗.

附:
,其中
(1)求频率分布直方图中
的值;
(2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下
列联表所示,将列联表补充完整,并根据列联表判断是否有
%的把握认为优质树苗与地区有关?










附:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(1)求频率分布直方图中

(2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下


| 甲地区 | 乙地区 | 合计 |
优质树苗 | 5 | | |
非优质树苗 | | 25 | |
合计 | | | |
某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:cm).经统计,高度均在区间[20,50]内,将其按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50]分成6组,制成如图所示的频率分布直方图,其中高度不低于40cm的树苗为优质树苗.

(1)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下2×2列联表所示,将列联表补充完整,并根据列联表判断是否有99.9%的把握认为优质树苗与地区有关?
(2)用样本估计总体的方式,从这批树苗中随机抽取4棵,期中优质树苗的棵数记为X,求X的分布列和数学期望.
附:K2=
,其中n=a+b+c+d

(1)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下2×2列联表所示,将列联表补充完整,并根据列联表判断是否有99.9%的把握认为优质树苗与地区有关?
(2)用样本估计总体的方式,从这批树苗中随机抽取4棵,期中优质树苗的棵数记为X,求X的分布列和数学期望.
| 甲地区 | 乙地区 | 合计 |
优质树苗 | 5 | | |
非优质树苗 | | 25 | |
合计 | | | |
附:K2=

P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |