- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 完善列联表
- 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各
名,将男性、女性使用微信的时间分成
组:
,
,
,
,
分别加以统计,得到如图所示的频率分布直方图.

(1)根据女性频率分布直方图,估计女性使用微信的平均时间;
(2)若每天玩微信超过
小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成
的列联表,并判断是否有
的把握认为“微信控”与“性别”有关?
参考公式:
,其中
.
参考数据:








(1)根据女性频率分布直方图,估计女性使用微信的平均时间;
(2)若每天玩微信超过



参考公式:


参考数据:

某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.
(1)求
的值;
(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列
列联表,并判断是否有
的把握认为消费金额与性别有关?
(3)分析人员对抽取对象每周的消费金额
与年龄
进一步分析,发现他们线性相关,得到回归方程
.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)
列联表
临界值表:
,其中

(1)求

(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列


(3)分析人员对抽取对象每周的消费金额




| 男性 | 女性 | 合计 |
消费金额![]() | | | |
消费金额![]() | | | |
合计 | | | |
临界值表:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |


某市在争创文明城市过程中,为调查市民对文明出行机动车礼让行人的态度,选了某小区的100位居民调查结果统计如下:
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄段与是否支持文明出行机动车礼让行人有关?
(3)已知在被调查的年龄小于25岁的支持者有5人,其中2人是教师,现从这5人中随机抽取3人,求至多抽到1位教师的概率.
| 支持 | 不支持 | 合计 |
年龄不大于45岁 | | | 80 |
年龄大于45岁 | 10 | | |
合计 | | 70 | 100 |
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄段与是否支持文明出行机动车礼让行人有关?
(3)已知在被调查的年龄小于25岁的支持者有5人,其中2人是教师,现从这5人中随机抽取3人,求至多抽到1位教师的概率.
随着中国教育改革的不断深入,越来越多的教育问题不断涌现.“衡水中学模式”入驻浙江,可以说是应试教育与素质教育的强烈碰撞.这一事件引起了广大市民的密切关注.为了了解广大市民关注教育问题与性别是否有关,记者在北京,上海,深圳随机调查了100位市民,其中男性55位,女性45位.男性中有45位关注教育问题,其余的不关注教育问题;女性中有30位关注教育问题,其余的不关注教育问题.
(1)根据以上数据完成下列2×2列联表;
(2)能否在犯错误的概率不超过0.025的前提下认为是否关注教育与性别有关系?
参考公式:
,其中
.
(1)根据以上数据完成下列2×2列联表;
| 关注教育问题 | 不关注教育问题 | 合计 | |||||
女 | 30 | | 45 | |||||
男 | 45 | | 55 | |||||
合计 | ![]() | | 100 | |||||
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |||
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | |||
|
(2)能否在犯错误的概率不超过0.025的前提下认为是否关注教育与性别有关系?
参考公式:


某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成
列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?

(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:
.

(1)根据茎叶图中的数据完成


(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:

![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
(1)根据以上数据完成
列联表,并判断是否有
的把握认为购买金额是否少于60元与性别有关.
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为
(每次抽奖互不影响,且
的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数
(元)的分布列并求其数学期望.
附:参考公式和数据:
,
.
附表:
购买金额(元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根据以上数据完成


| 不少于60元 | 少于60元 | 合计 |
男 | | 40 | |
女 | 18 | | |
合计 | | | |
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为



附:参考公式和数据:


附表:
![]() | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
![]() | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
为了调查生活规律与患胃病是否与有关,某同学在当地随机调查了200名30岁以上的人,并根据调查结果制成了不完整的列联表如下:
(1)补全列联表中的数据;
(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:

| 不患胃病 | 患胃病 | 总计 |
生活有规律 | 60 | 40 | |
生活无规律 | | 60 | 100 |
总计 | 100 | | |
(1)补全列联表中的数据;
(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:

![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了解某班学生喜好体育运动是否与性别有关,对本班60人进行了问卷调查得到了如下的列联表:
已知按喜好体育运动与否,采用分层抽样法抽取容量为12的样本,则抽到喜好体育运动的人数为7.
(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜好体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
(参考公式:
,其中
)
| 喜好体育运动 | 不喜好体育运动 | 合计 |
男生 | | 5 | |
女生 | 10 | | |
合计 | | | 60 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为12的样本,则抽到喜好体育运动的人数为7.
(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜好体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:

