刷题首页
题库
高中数学
题干
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表:
月收入(单位百元)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75)
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
(Ⅰ)由以上统计数据填下面2×2列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;
月收入低于55百元的人数
月收入不低于55百元的人数
合计
赞成
不赞成
合计
(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.
参考公式:
K
2
,其中
n
=
a
+
b
+
c
+
d
.
参考数据:
P
(
K
2
≥
k
)
0.050
0.010
0.001
k
3.841
6.635
10.828
上一题
下一题
0.99难度 解答题 更新时间:2020-02-14 05:35:48
答案(点此获取答案解析)
同类题1
某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制右图所示频率分布直方图,已知之间三组的人数可构成等差数列.
(1)求
的值;
(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列
列联表,并判断是否有
的把握认为消费金额与性别有关?
(3)分析人员对抽取对象每周的消费金额
与年龄
进一步分析,发现他们线性相关,得到回归方程
.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)
,其中
同类题2
某工科院校对A、B两个专业的男、女生人数进行调查统计,得到以下表格:
专业
A
专业
B
合计
女生
12
男生
46
84
合计
50
100
如果认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过( )
注:
P
(
x
2
≥
k
)
0.10
0.05
0.025
0.010
0.005
k
0
2.706
3.841
5.024
6.635
7.879
A.0.005
B.0.01
C.0.025
D.0.05
同类题3
北京联合张家口获得2022年第24届冬奥会举办权,我国各地掀起了发展冰雪运动的热潮,现对某高中的学生对于冰雪运动是否感兴趣进行调查,该高中男生人数是女生的1.2倍,按照分层抽样的方法,从中抽取110人,调查高中生“是否对冰雪运动感兴趣”得到如下列联表:
感兴趣
不感兴趣
合计
男生
40
女生
30
合计
110
(1)补充完成上述
列联表;
(2)是否有99%的把握认为是否喜爱冰雪运动与性别有关.
附:
(其中
).
0.15
0.10
0.05
0.025
0.010
0.005
2.072
2.706
3.841
5.024
6.635
7.879
同类题4
中央政府为了对应因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
(1)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异:
(2)若从年龄在
的被调查人中随机选取两人进行调查,求选中的2人中恰有1人支持“延迟退休”的概率.
参考数据:
.
同类题5
“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是近几年我国某地区新能源乘用车的年销售量与年份的统计表:
年份
2014
2015
2016
2017
2018
销量(万台)
8
10
13
25
24
某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:
购置传统燃油车
购置新能源车
总计
男性车主
6
24
女性车主
2
总计
30
(1)求新能源乘用车的销量
关于年份
的线性相关系数
,并判断
与
是否线性相关;
(2)请将上述
列联表补充完整,并判断是否有
的把握认为购车车主是否购置新能源乘用车与性别有关;
(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为
X
,求
X
的数学期望与方差.
参考公式:
,
,其中
.
,若
,则可判断
与
线性相关.
附表:
0.10
0.05
0.025
0.010
0.001
2.706
3.841
5.024
6.635
10.828
相关知识点
计数原理与概率统计
统计案例
独立性检验
列联表
完善列联表