刷题首页
题库
高中数学
题干
为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了
人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄
频数
支持“生二胎”
(1)由以上统计数据填下面
列联表,并问是否有
的把握认为以
岁为分界点对“生育二胎放开”政策的支持度有差异;
年龄不低于
岁的人数
年龄低于
岁的人数
合计
支持
不支持
合计
(2)若对年龄在
的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:
,
,
.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-18 07:15:41
答案(点此获取答案解析)
同类题1
在对人们休闲方式的调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.能否在犯错误的概率不超过0.025的前提下认为性别与休闲方式是否有关系?
同类题2
北京时间2017年5月27日,谷歌围棋人工智能AlphaGo与中国棋手柯洁进行最后一轮较量,AlphaGo获得本场比赛胜利,最终人机大战总比分定格在0∶3.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图如图所示,将日均学习围棋时间不低于40分钟 的学生称为“围棋迷”.
(1)根据已知条件完成下面的列联表,并据此资料判断是否有95%的把握认为“围棋迷”与性别有关?
非围棋迷
围棋迷
合计
男
女
10
55
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:K
2
,其中n=a+b+c+d.
P(K
2
≥k
0
)
0.05
0.01
k
0
3.841
6.635
同类题3
某城市随机抽取一年(
天)内
天的空气质量指数
的监测数据,结果统计如下:
空气质量
优
良
轻微污染
轻度污染
中度污染
中度重污染
重度污染
天数
(1)若某企业每天由空气污染造成的经济损失
(单位:元)与空气质量指数
(记为
)的关
系式为:
试估计在本年内随机抽取一天,该天经济损失
大于
元且不超过
元的概率;
(2)若本次抽取的样本数据有
天是在供暖季,其中有
天为重度污染,完成下面
列联表,并判断能否有
的把握认为该市本年空气重度污染与供暖有关?
非重度污染
重度污染
合计
供暖季
非供暖季
合计
附:
同类题4
2018年6月19日凌晨某公司公布的年中促销全天交易数据显示,天猫年中促销当天全天下单金额为1592亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了6月18日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额(元)
频数
频率
5
0.05
15
0.15
25
0.25
30
0.3
合计
100
1
(Ⅰ)先求出
的值,再将图中所示的频率分布直方图绘制完整;
(Ⅱ)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
网龄3年以上
网龄不足3年
总计
购物金额在2000元以上
35
购物金额在2000元以下
20
总计
100
参考数据:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.076
3.841
5.024
6.635
7.879
10.828
参考公式:
其中
.
(Ⅲ)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在
和
两组所抽中的8人中再随机抽取2人各奖励1000元现金,求
组获得现金奖的数学期望.
同类题5
一项针对某一线城市30~50岁都市中年人的消费水平进行调查,现抽查500名(200名女性,300名男性)此城市中年人,最近一年内购买六类高价商品(电子产品、服装、手表、运动与户外用品、珠宝首饰、箱包)的金额(万元)的频数分布表如下:
女性
金额
频数
20
40
80
50
10
男性
金额
频数
45
75
90
60
30
(1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.
(2)把购买六类高价商品的金额不低于5000元的中年人称为“高收入人群”,根据已知条件完成
列联表,并据此判断能否有95%的把握认为“高收入人群”与性别有关?
高收入人群
非高收入人群
合计
女性
60
男性
180
合计
500
参考公式:
,其中
参考附表:
0.10
0.050
0.010
0.001
2.706
3.841
6.635
10.828
相关知识点
计数原理与概率统计
统计案例
独立性检验
列联表
完善列联表