- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 列联表
- 完善列联表
- 列联表分析
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60),……,第五组[70,75],按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为a∶4∶10.

(1)求a的值,并求这50名学生心率的平均值;
(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取1名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?说明你的理由.
参考数据:
参考公式:K2=
,其中n=a+b+c+d.

(1)求a的值,并求这50名学生心率的平均值;
(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取1名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?说明你的理由.
| 心率小于60次/分 | 心率不小于60次/分 | 合计 |
体育生 | | | 20 |
艺术生 | | | 30 |
合计 | | | 50 |
参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:K2=

某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革的关系,随机抽取了100名员工进行调查,其中支持企业改革的调查者中,工作积极的46人,工作一般的35人,而不太赞成企业改革的调查者中,工作积极的4人,工作一般的15人.
(1) 根据以上数据建立一个
的列联表;
(2)对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的态度与其工作积极性是否有关系?
参考公式:
(其中n=a+b+c+d)
(1) 根据以上数据建立一个

(2)对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的态度与其工作积极性是否有关系?
参考公式:

P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(本题满分12分)某中学一名数学老师对全班
名学生某次考试成绩分男女生进行了统计(满分
分),其中
分(含
分)以上为优秀,绘制了如下的两个频率分布直方图:

(Ⅰ)根据以上两个直方图完成下面的
列联表:

(Ⅱ)根据(Ⅰ)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?

(Ⅲ)若从成绩在
的学生中任取
人,求取到的
人中至少有
名女生的概率.





(Ⅰ)根据以上两个直方图完成下面的


(Ⅱ)根据(Ⅰ)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?

(Ⅲ)若从成绩在




某大学高等数学老师这学期分别用
两种不同的教学方式试验甲、乙两个大一班(人数均为60人,入学时的数学平均分数和优秀率都相同,勤奋程度和自觉性都一样),现随机抽取甲、乙两班各20名同学的高等数学期末考试成绩(单位:分),得到如下茎叶图:

(1)依茎叶图判断哪个班的平均分高(不需要计算);
(2)现从甲班高等数学成绩不低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(3)学校规定:成绩不低于85分为优秀,请填写下面的
列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关”(
的观测值
的计算结果小数点后保留三位有效数字)
注:参考数据与公式
,其中
,
临界值表:


(1)依茎叶图判断哪个班的平均分高(不需要计算);
(2)现从甲班高等数学成绩不低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(3)学校规定:成绩不低于85分为优秀,请填写下面的



| 甲班 | 乙班 | 总计 |
优秀 | | | |
不优秀 | | | |
总计 | | | |
注:参考数据与公式


临界值表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了解大学生观看浙江卫视综艺节目“奔跑吧兄弟”是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表:
若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看“奔跑吧兄弟”的有6人.
(1)请将上面的列联表补充完整;
(2)是否有
的把握认为喜欢看“奔跑吧兄弟”节目与性别有关?说明你的理由;
(3)已知喜欢看“奔跑吧兄弟”的10位男生中,
还喜欢看新闻,
还喜欢看动画片,
还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
下面的临界值表供参考:
(参考公式:
)
| 喜欢看“奔跑吧兄弟” | 不喜欢看“奔跑吧兄弟” | 合计 |
女生 | | 5 | |
男生 | 10 | | |
合计 | | | 50 |
若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看“奔跑吧兄弟”的有6人.
(1)请将上面的列联表补充完整;
(2)是否有

(3)已知喜欢看“奔跑吧兄弟”的10位男生中,





下面的临界值表供参考:
P(χ2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:

打鼾不仅影响别人休息,而且可能与患某种疾病有关.表是一次调查所得的数据.
(1)将本题的
联表格补充完整;
(2)甲提示的公式计算,每一晚都打鼾与患心脏病有关吗?
提示:
(1)将本题的

(2)甲提示的公式计算,每一晚都打鼾与患心脏病有关吗?
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
提示:

| 患心脏病 | 未患心脏病 | 合计 |
每一晚都打鼾 | 3 | 17 | ![]() |
不打鼾 | 2 | 128 | ![]() |
合计 | ![]() | ![]() | ![]() |
2015年10月十八届五中全会决定2016年1月1日起全国统一实施全面两孩政策,为了了解适龄民众对放开生育二胎政策的态度,某市进行了一次民意调查,参与调查的100位市民中,年龄分布情况如下图所示,并得到适龄民众对放开生育二胎政策的态度数据如下表:
(1)填写上面的
列联表;
(2)根据调查数据,有多少的把握认为“生二胎与年龄有关”,说明理由;
(3)调查对象中决定生二胎的民众有六人分别来自三个不同的家庭且为父子,各自家庭都有一个约定:父亲先生二胎,然后儿子生二胎,则这三个家庭“二胎出生的日期的先后顺序”有多少种?
参考数据:
(参考公式:
,其中
)
| 生二胎 | 不生二胎 | 合计 |
25~35岁 | | 10 | |
35~50岁 | 30 | | |
合计 | | | 100 |
(1)填写上面的

(2)根据调查数据,有多少的把握认为“生二胎与年龄有关”,说明理由;
(3)调查对象中决定生二胎的民众有六人分别来自三个不同的家庭且为父子,各自家庭都有一个约定:父亲先生二胎,然后儿子生二胎,则这三个家庭“二胎出生的日期的先后顺序”有多少种?
参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 6.635 |
(参考公式:


衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,得到下面的数据表:
下面临界值表:
(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量
,求
的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
休闲方式 性别 | 看电视 | 看书 | 合计 |
男 | 20 | 100 | 120 |
女 | 20 | 20 | 40 |
合计 | 40 | 120 | 160 |
下面临界值表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量


(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
为了增强中小学生运动健身意识,某校举办中小学生体育运动知识竞赛,学校根据男女生比例从男生中随机抽取120人,女生中随机抽取100人,进行成绩统计分析,其中成绩在80分以上为优秀,根据样本统计数据分别制作了男生成绩频数分布表以及女生成绩频率分布直方图如图:
男生成绩:
女生成绩:

(Ⅰ)根据上述数据完成下列
列联表:
根据此数据你认为能否有
以上的把握认为体育运动知识竞赛成绩是否优秀与性别有关?
参考公式:
,(
),
(Ⅱ)以样本中的频率作为概率,学校在全校成绩优秀的学生中随机抽取3人参加全市中小学体育运动知识竞赛.
(i)在其中2人为男生的条件下,求另1人为女生的概率;
(ii)设3人中女生人数为随机变量
,求
的分布列与数学期望.
男生成绩:
分数段 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 9 | 10 | 21 | 57 | 23 |
女生成绩:

(Ⅰ)根据上述数据完成下列

| 优秀 | 非优秀 | 合计 |
男生 | ![]() | ![]() | |
女生 | ![]() | ![]() | |
合计 | | | |
根据此数据你认为能否有

参考公式:


![]() | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅱ)以样本中的频率作为概率,学校在全校成绩优秀的学生中随机抽取3人参加全市中小学体育运动知识竞赛.
(i)在其中2人为男生的条件下,求另1人为女生的概率;
(ii)设3人中女生人数为随机变量

