- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 列联表
- 完善列联表
- 列联表分析
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查
人,并将调查情况进行整理后制成下表:
(1)世界联合国卫生组织规定:
岁为青年,
为中年,根据以上统计数据填写以下
列联表:
(2)判断能否在犯错误的概率不超过
的前提下,认为赞成“车柄限行”与年龄有关?
附:
,其中
独立检验临界值表:
(3)若从年龄
的被调查中各随机选取
人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为
,求随机变量
的分布列和数学期望
.

年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() |
赞成人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)世界联合国卫生组织规定:



| 青年人 | 中年人 | 合计 |
不赞成 | | | |
赞成 | | | |
合计 | | | |
(2)判断能否在犯错误的概率不超过

附:


独立检验临界值表:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(3)若从年龄





随机调查某社区80个人,以研究这一社区居民在17:00—21:00时间段的休闲方式是否与性别有关,得到下面的数据表:

(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量
,求
的分布列和期望;
(2)根据以上数据,能否有99%的把握认为在17:00—21:00时间段的休闲方式与性别有关系?

(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量


(2)根据以上数据,能否有99%的把握认为在17:00—21:00时间段的休闲方式与性别有关系?
某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):

(ⅱ)分别计算模型甲与模型乙的残差平方和
及
,并通过比较
,
的大小,判断哪个模型拟合效果更好.
(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):

(ⅱ)分别计算模型甲与模型乙的残差平方和




(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如下图:

(1)根据茎叶图中的数据完成下面的
列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为
,
,
,若
,则此二人适合结为学习上互帮互助的“师徒”,记
为两人中解决此题的人数,若
,问两人是否适合结为“师徒”?
参考公式及数据:
,其中
.

(1)根据茎叶图中的数据完成下面的

| 及格(![]() | 不及格 | 合计 |
很少使用手机 | | | |
经常使用手机 | | | |
合计 | | | |
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为






参考公式及数据:


![]() | 0.10 | 0.05 | 0.025 |
![]() | 2.706 | 3.841 | 5.024 |
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是
.
(1)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
| 男性 | 女性 | 合计 |
反感 | 10 | | |
不反感 | | 8 | |
合计 | | | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是

(1)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(

(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
某企业为了更好地了解设备改造前后与生产合格品的关系,随机抽取了180件产品进行分析,其中设备改造前的合格品有36件,不合格品有49件,设备改造后生产的合格品有65件,不合格品有30件.根据所给数据:
,
数据支持:(65×49-36×30)2 =4431025 101×79×85×95=64430825
(1)写出2×2列联表; (2)判断产品是否合格与设备改造是否有关,说明理由.
附:K2=

数据支持:(65×49-36×30)2 =4431025 101×79×85×95=64430825
某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的
列联表,且已知在甲、乙两个文科班全部110人中随机抽1人为优秀的概率为
.
Ⅰ.请完成上面的列联表;
Ⅱ.根据列联表的数据,是否有
的把握认为“成绩与班级有关系”.
参考公式与临界值表:
.


| 优秀 | 非优秀 | 合计 |
甲班 | 10 | | |
乙班 | | 30 | |
合计 | | | 110 |
Ⅰ.请完成上面的列联表;
Ⅱ.根据列联表的数据,是否有

参考公式与临界值表:

