- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 列联表
- 完善列联表
- 列联表分析
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
微信是现代生活进行信息交流的重要工具,若要调查某公司使用微信的员工经常使用微信与年龄的关系,并规定每天使用微信时间在一小时以上为经常使用微信.据统计,该公司200名员工中90%的人使用微信,其中不经常使用微信的有60人,其余经常使用微信.若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的中75%是青年人.经常使用微信的员工中,有80人是青年人.
(1)请完成如下
联列表,
(2)由列联表中所得数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(3)现采用分层抽样的方法从“经常使用微信的人”中抽取6人,从已抽取的这6人中任选2人,求“选出的2人均为青年人”的概率.
(1)请完成如下

| 青年人 | 中年人 | 合计 |
经常使用微信 | | | |
不经常使用微信 | | | |
合计 | | | |
(2)由列联表中所得数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(3)现采用分层抽样的方法从“经常使用微信的人”中抽取6人,从已抽取的这6人中任选2人,求“选出的2人均为青年人”的概率.
某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的
列联表:
(Ⅰ)将此样本的频率估计为总体的概率,随机调查了本校的3名学生,设这3人中爱好羽毛球运动的人数为
,求
的分布列,数学期望及方差;
(Ⅱ)根据表中数据,能否有充分证据判断爱好羽毛球运动与性别有关?若有,有多大把握?
附:

| 爱好 | 不爱好 | 合计 |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合计 | 30 | 50 | 80 |
(Ⅰ)将此样本的频率估计为总体的概率,随机调查了本校的3名学生,设这3人中爱好羽毛球运动的人数为


(Ⅱ)根据表中数据,能否有充分证据判断爱好羽毛球运动与性别有关?若有,有多大把握?
![]() | 0.500 | 0.100 | 0.050 | 0.010 |
![]() | 0.455 | 2.706 | 3.841 | 6.635 |
附:

通过随机询问2016名性别不同的大学生是否爱好某项运动,得到
,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是( )

![]() | … | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 | … |
![]() | … | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 | … |
A.![]() | B.![]() | C.![]() | D.![]() |
考察黄烟经过培养液处理与是否跟发生青花病的关系.调查了1633株黄烟,得到如表中数据,请根据数据作统计分析:
附:
| 培养液处理 | 未处理 | 合计 |
青花病 | 30 | 224 | 254 |
无青花病 | 24 | 1355 | 1379 |
合计 | 54 | 1579 | 1633 |
附:

![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.83 |
国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:
,
.

(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:



为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:
已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为
.
(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?
独立性检验临界值表:
参考公式:
,其中n=a+b+c+d.
| 常 喝 | 不常喝 | 总 计 |
肥 胖 | | 2 | |
不肥胖 | | 18 | |
总 计 | | | 30 |
已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为

(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?
独立性检验临界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:

调查在
级风的海上航行中71名乘客的晕船情况,在男人中有12人晕船,25人不晕船,在女人中有10人晕船,24人不晕船
(1)作出性别与晕船关系的列联表;
(2)根据此资料,能否在犯错误的概率不超过0.1的前提下认为
级风的海上航行中晕船与性别有关?
附:.

(1)作出性别与晕船关系的列联表;
(2)根据此资料,能否在犯错误的概率不超过0.1的前提下认为

| 晕船 | 不晕船 | 总计 |
男人 | | | |
女人 | | | |
总计 | | | |
附:.

![]() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
一项针对人们休闲方式的调查结果如下:受调查对象总计124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个
的列联表;
(2)根据下列提供的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?
独立检验临界值表:
参考公式:
.
(1)根据以上数据建立一个

(2)根据下列提供的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?
独立检验临界值表:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:

在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲.
(Ⅰ)根据题中数据建立一个
的列联表;
(Ⅱ)在犯错误的概率不超过0.001的前提下,能否认为“性别与患色盲有关系”?
附:参考公式
,
(Ⅰ)根据题中数据建立一个

(Ⅱ)在犯错误的概率不超过0.001的前提下,能否认为“性别与患色盲有关系”?
附:参考公式


2017年春节晚会与1月27日晚在CCTV进行直播.某广告策划公司为了了解本单位员工对春节晚会的关注情况,春节后对本单位部分员工进行了调查.其中有75%的员工看春节晚会直播时间不超过120分钟,这一部分员工看春节晚会直播时间的茎叶图如图(单位:分钟),而其中观看春节晚会直播时间超过120分钟的员工中,女性员工占
.若观看春节晚会直播时间不低于60分钟视为“喜爱春晚”,否则视为“不喜爱春晚”.

附:参考数据:
参考公式:
,
)
(Ⅰ)若从观看春节晚会直播时间为120分钟的员工中抽取2人,求2人中恰好有1名女性员工的概率;
(Ⅱ)试完成下面的
列联表,并依此数据判断是否有99.9%以上的把握认为“喜爱春晚”与性别相关?


附:参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


(Ⅰ)若从观看春节晚会直播时间为120分钟的员工中抽取2人,求2人中恰好有1名女性员工的概率;
(Ⅱ)试完成下面的

| 喜爱春晚 | 不喜爱春晚 | 合计 |
男性员工 | | | |
女性员工 | | | |
合计 | | | |