- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的
列联表:
(Ⅰ)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为
,求
的分布列和数学期望;
(Ⅱ)根据表3中数据,能否认为爱好羽毛球运动与性别有关?
附:

| 爱好 | 不爱好 | 合计 |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合计 | 30 | 50 | 80 |
(Ⅰ)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为


(Ⅱ)根据表3中数据,能否认为爱好羽毛球运动与性别有关?
![]() | 0.050 | 0.010 |
![]() | 3.841 | 6.635 |
附:

某公司的广告费支出
与销售额
(单位:万元)之间有下列对应数据,且
与
线性相关。
中的b=6.5。
(1)求
的值。
(2)预测销售额为115万元时,大约需要多少万元的广告费?




![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
根据表中提供的数据得到线性回归方程

(1)求

(2)预测销售额为115万元时,大约需要多少万元的广告费?
为调查某地区老年人是否需要志愿者提供帮助用简单随机抽样方法从该地区调查了500位老年人,结果如下:
| 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1) 估计该地区老年人中需要志愿者提供帮助的老年人的比例
(2) 能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
附:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |

某公司的广告费支出
与销售额
(单位:万元)之间有下列对应数据:由资料显示
对
呈线性相关关系.
根据上表提供的数据得到回归方程
中的
,预测销售额为
万元时约需____万元广告费.




![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |



学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:
根据上表可得回归方程
中的
为6,据此模型预测气温为30℃时销售饮料瓶数为( )
摄氏温度 | §-1 | 3 | 8 | 12 | 17 |
饮料瓶数 | 3 | 40 | 52 | 72 | 122 |
根据上表可得回归方程


A.141 | B.191 | C.211 | D.241 |
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下面表中所示:
是否需要帮助 性别 | 男 | 女 | 合计 |
需要 | 50 | 25 | 75 |
不需要 | 200 | 225 | 425 |
合计 | 250 | 250 | 500 |
(2)能否在出错的概率不超过1%的前提下,认为该地老年人是否需要帮助与性别有关?并说明理由;
(3)根据(2)的结论,你能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?并说明理由.
附:独立性检验卡方统计量


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(题文)某班为了调查同学们周末的运动时间,随机对该班级50名同学进行了不记名的问卷调查,得到了如下表所示的统计结果:
(1)根据统计结果,能否在犯错误概率不超过0.05的前提下,认为该班同学周末的运动时间与性别有关?
(2)用分层抽样的方法,从男生中抽取6名同学,再从这6名同学中随机抽取2名同学,求这两名同学中恰有一位同学运动时间超过2小时的概率.
附:
,其中
.
| 运动时间不超过2小时 | 运动时间超过2小时 | 合计 |
男生 | 10 | 20 | 30 |
女生 | 13 | 7 | 20 |
合计 | 23 | 27 | 50 |
(1)根据统计结果,能否在犯错误概率不超过0.05的前提下,认为该班同学周末的运动时间与性别有关?
(2)用分层抽样的方法,从男生中抽取6名同学,再从这6名同学中随机抽取2名同学,求这两名同学中恰有一位同学运动时间超过2小时的概率.
附:



(2015秋•沈阳校级月考)考取驾照是一个非常严格的过程,有的人并不能一次性通过,需要进行补考,现在有一张某驾校学员第一次考试结果汇总表:

(1)完成列联表
(2)根据列联表判断性别与考试成绩是否有关系,如果有关系求出精确地可信度,没关系请说明理由.

(1)完成列联表
(2)根据列联表判断性别与考试成绩是否有关系,如果有关系求出精确地可信度,没关系请说明理由.
(2015秋•桃江县校级月考)通过随机询问某校高二年级学生在购买食物时是否看营养说明,得到如下列联表:
参考数据:
参考公式:K2=
,n=a+b+c+d
(1)写出x,y,z的值
(2)根据以上列联表,问有多大把握认为“性别在购买食物时看营养说明”有关?
(3)从女生中按是否看营养说明采取分层抽样,抽取容量为5的样本,再从这5名女生中随机选取两名作深度访谈.求选到看与不看营养说明的女生各一名的概率.
男生 | 女生 | 总计 | |
看营养说明 | 50 | 30 | 80 |
不看营养说明 | 10 | x | y |
总计 | 60 | z | 110 |
P(K2≥K) | 0.10 | 0.05 | 0.01 | 0.005 |
K | 2.706 | 3.841 | 6.635 | 7.879 |

(1)写出x,y,z的值
(2)根据以上列联表,问有多大把握认为“性别在购买食物时看营养说明”有关?
(3)从女生中按是否看营养说明采取分层抽样,抽取容量为5的样本,再从这5名女生中随机选取两名作深度访谈.求选到看与不看营养说明的女生各一名的概率.