- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现如今,“网购”一词不再新鲜,越来越多的人已经接受并喜欢了这种购物方式,但随之也出现了商品质量不能保证与信誉不好等问题,因此,相关管理部门制定了针对商品质量与服务的评价体系,现从评价系统中选出成功交易200例,并对其评价进行统计:对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)依据题中的数据完成下表,并通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;

(2)若将频率视为概率,某人在该购物平台上进行了5次购物,设对商品和服务全好评的次数为随机变量
,求
的分布列(概率用算式表示)、数学期望和方差.
(1)依据题中的数据完成下表,并通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;

(2)若将频率视为概率,某人在该购物平台上进行了5次购物,设对商品和服务全好评的次数为随机变量



如图,在公路
两侧分别有
,
,…,
七个工厂,各工厂与公路
(图中粗线)之间有小公路连接.现在需要在公路
上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( )
①车站的位置设在
点好于
点;②车站的位置设在
点与
点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.







①车站的位置设在





A.① | B.② | C.①③ | D.②③ |
某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:
(I)画出散点图,并求
关于
的回归方程;
(II)已知该产品的成本是36元/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?
附:回归直线
的斜率和截距的最小二乘法估计公式分别为:

单价x(元/件) | 60 | 62 | 64 | 66 | 68 | 70 |
销量y(件) | 91 | 84 | 81 | 75 | 70 | 67 |
(I)画出散点图,并求


(II)已知该产品的成本是36元/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?
附:回归直线


在2017年3月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价
元和销售量
件之间的一组数据如下表所示:
由散点图可知,销售量
与价格
之间有较好的线性相关关系,其线性回归方程是:
,则
__________.


价格![]() | 9 | 9.5 | 10 | 10.5 | 11 |
销售量![]() | 11 | 10 | 8 | 6 | 5 |
由散点图可知,销售量




为了研究一种昆虫的产卵数
和温度
是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:
与模型②:
作为产卵数
和温度
的回归方程来建立两个变量之间的关系.
其中
,
,
,
,
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.

(1)在答题卡中分别画出
关于
的散点图、
关于
的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).

(2)根据表中数据,分别建立两个模型下建立
关于
的回归方程;并在两个模型下分别估计温度为
时的产卵数.(
与估计值均精确到小数点后两位)(参考数据:
,
,
)
(3)若模型①、②的相关指数计算得分分别为
,
,请根据相关指数判断哪个模型的拟合效果更好.






温度![]() | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数![]() | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
![]() | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
![]() | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
![]() | ![]() | ![]() | ![]() |
26 | 692 | 80 | 3.57 |
![]() | ![]() | ![]() | ![]() |
1157.54 | 0.43 | 0.32 | 0.00012 |
其中




附:对于一组数据





(1)在答题卡中分别画出





(2)根据表中数据,分别建立两个模型下建立







(3)若模型①、②的相关指数计算得分分别为


某班一个学习小组在一次数学实践活动中,测得一组数据共5个,如下表
若
,计算得回归方程为
,则
的值为( )
x | ![]() | ![]() | ![]() | ![]() | 5 |
y | 2.5 | 4.6 | 5.4 | n | 7.5 |
若



A.9 | B.8 | C.7 | D.6 |
高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:
已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有
的把握认为喜欢中国古典文学与性别有关?请说明理由;
(3)已知在喜欢中国古典文学的10位男生中,
,
,
还喜欢数学,
,
还喜欢绘画,
,
还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
参考公式及数据:
,其中
.
| 喜欢中国古典文学 | 不喜欢中国古典文学 | 合计 |
女生 | | 5 | |
男生 | 10 | | |
合计 | | | 50 |
已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为

(1)请将上面的列联表补充完整;
(2)是否有

(3)已知在喜欢中国古典文学的10位男生中,









参考公式及数据:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某中学兴趣小组为调查该校学生对学校食堂的某种食品喜爱与否是否与性别有关,随机询问了100名性别不同的学生,得到如下的
列联表:

附:
根据以上数据,该数学兴趣小组有多大把握认为“喜爱该食品与性别有关”?( )


附:

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
根据以上数据,该数学兴趣小组有多大把握认为“喜爱该食品与性别有关”?( )
A.99%以上 | B.97.5%以上 | C.95%以上 | D.85%以上 |
为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.

(1)完成下面
列联表,并判断是否有
的把握认为“空间想象能力突出”与性别有关;
(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为
,求随机变量
的分布列和数学期望.
下面公式及临界值表仅供参考:

(1)完成下面


| 空间想象能力突出 | 空间想象能力正常 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为


下面公式及临界值表仅供参考:

![]() | 0.100 | 0.050 | 0.010 |
![]() | 2.706 | 3.841 | 6.635 |