- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了响应国家号召,某校组织部分学生参与了“垃圾分类,从我做起”的知识问卷作答,并将学生的作答结果分为“合格”与“不合格”两类与“问卷的结果”有关?
(1)是否有90%以上的把握认为“性别”与“问卷的结果”有关?
(2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望
.
附:
| 不合格 | 合格 |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握认为“性别”与“问卷的结果”有关?
(2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望

附:

![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.703 | 3.841 | 6.635 | 10.828 |
纪念币是一个国家为纪念国际或本国的政治、历史,文化等方面的重大事件、杰出人物、名胜古迹、珍稀动植物、体育赛事等而发行的法定货币.我国在1984年首次发行纪念币,目前已发行了115套纪念币,这些纪念币深受邮币爱好者的喜爱与收藏.2019年发行的第115套纪念币“双遗产之泰山币”是目前为止发行的第一套异形币,因为这套纪念币的多种特质,更加受到爱好者追捧.某机构为调查我国公民对纪念币的喜爱态度,随机选了某城市某小区的50位居民调查,调查结果统计如下:
(1)根据已有数据,把表格数据填写完整,判断能否在犯错误的概率不超过
的前提下认为不同年龄与纪念币的喜爱无关?
(2)已知在被调查的年龄不大于40岁的喜爱者中有5名男性,其中3位是学生,现从这5名男性中随机抽取2人,求至多有1位学生的概率.
附:
,
.
| 喜爱 | 不喜爱 | 合计 |
年龄不大于40岁 | | | 24 |
年龄大于40岁 | 20 | | |
合计 | | 22 | 50 |
(1)根据已有数据,把表格数据填写完整,判断能否在犯错误的概率不超过

(2)已知在被调查的年龄不大于40岁的喜爱者中有5名男性,其中3位是学生,现从这5名男性中随机抽取2人,求至多有1位学生的概率.
附:


![]() | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据
(单位:十亿元).绘制如下表1:
表1
根据以上数据绘制散点图,如图所示.

(1)根据散点图判断,
与
哪一个适宜作为销售额
关于
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及下表中的数据,建立
关于
的回归方程,并预测2020年天猫双十一销售额;(注:数据保留小数点后一位)
(3)把销售额超过10(十亿元)的年份叫“畅销年”,把销售额超过100(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取3个,求取到的“狂欢年”个数
的分布列与期望.
参考数据:
.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为
,
.

表1
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
编号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
销售额![]() | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根据以上数据绘制散点图,如图所示.

(1)根据散点图判断,




(2)根据(1)的判断结果及下表中的数据,建立


(3)把销售额超过10(十亿元)的年份叫“畅销年”,把销售额超过100(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取3个,求取到的“狂欢年”个数

参考数据:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:对于一组数据






某高级中学为调查学生选科情况,从高一学生中随机抽取40名男生和20名女生进行调查,得到如下列联表:
(1)分别估计男生中选择理科、女生中选择文科的概率;
(2)能否有99.9%的把握认为学生选择理科或文科与性别有关?
参考公式:
,其中
.
| 选理科 | 选文科 |
男生(单位:名) | 35 | 5 |
女生(单位:名) | 5 | 15 |
(1)分别估计男生中选择理科、女生中选择文科的概率;
(2)能否有99.9%的把握认为学生选择理科或文科与性别有关?
参考公式:


![]() | 0.05 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村
户贫困户.为了做到精准帮扶,工作组对这
户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标
.将指标
按照
,
,
,
,
分成五组,得到如图所示的频率分布直方图.规定若
,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”;当
时,认定该户为“亟待帮住户”.工作组又对这
户家庭的受教育水平进行评测,家庭受教育水平记为“良好”与“不好”两种.

(1)完成下面的列联表,并判断是否有
的把握认为绝对贫困户数与受教育水平不好有关:
(2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于
的贫困户中,随机选取两户,用
表示所选两户中“亟待帮助户”的户数,求
的分布列和数学期望
.
附:
,其中
.













(1)完成下面的列联表,并判断是否有

| 受教育水平良好 | 受教育水平不好 | 总计 |
绝对贫困户 | ![]() | | |
相对贫困户 | | ![]() | |
总计 | | | ![]() |
(2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于




附:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表.
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面
列联表,并判断是否有99%的把握认为“使用微信支付”的态度与人的年龄有关;
(Ⅱ)若从年龄在
的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成使用微信交流的概率.
参考数据:
,其中
.
年龄 (单位:岁) | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面

| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 |
赞成 | | | |
不赞成 | | | |
合计 | | | |
(Ⅱ)若从年龄在

参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |


近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方
中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价,现从评价系统中选出
条较为详细的评价信息进行统计,车辆状况和优惠活动评价的
列联表如下:
(1)能否在犯错误的概率不超过
的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过
向用户随机派送骑行券,用户可以将骑行券用于骑行付费,也可以通过
转赠给好友某用户共获得了
张骑行券,其中只有
张是一元券现该用户从这张骑行券中随机选取
张转赠给好友,求选取的
张中至少有
张是一元券的概率.
附:下面的临界值表仅供参考:
(参考公式:
,其中
)



| 对优惠活动好评 | 对优惠活动不满意 | 合计 |
对车辆状况好评 | ![]() | ![]() | ![]() |
对车辆状况不满意 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)能否在犯错误的概率不超过

(2)为了回馈用户,公司通过







附:下面的临界值表仅供参考:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(参考公式:


“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展,下表是近几年我国某地区新能源乘用车的年销售量与年份的统计表:
某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:
(1)求新能源乘用车的销量
关于年份
的线性相关系数
,并判断
与
是否线性相关;
(2)请将上述
列联表补充完整,并判断是否有
的把握认为购车车主是否购置新能源乘用车与性别有关;
参考公式:
,
,其中
.
,若
,则可判断
与
线性相关.
附表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
销量(万台) | 8 | 10 | 13 | 25 | 24 |
某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:
| 购置传统燃油车 | 购置新能源车 | 总计 |
男性车主 | | 6 | 24 |
女性车主 | 2 | | |
总计 | | | 30 |
(1)求新能源乘用车的销量





(2)请将上述


参考公式:







附表:
![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
端午节是中国传统节日之一节日期间,各大商场各种品牌的“粽子战”便悄然打响.某记者走访市场发现,各大商场粽子种类繁多,价格不一根据数据统计分析,得到了某商场不同种类的粽子销售价格(单位:元/千克)的频数分布表,如表一所示.
表一:
在调查中,记者还发现,各大品牌在馅料方面还做足了功课,满足了市民多样化的需求除了蜜枣、豆沙等传统馅料粽,很多品牌还推出了鲜肉、巧克力、海鲜等特色馅料粽在该商场内,记者随机对100名顾客的年龄和粽子口味偏好进行了调查,结果如表二.
表二:
(1)根据表一估计该商场粽子的平均销售价(同一组中的数据用该组区间的中点值代表);
(2)根据表二信息能否有95%的把握认为顾客的粽子口味偏好与年龄有关?
参考公式和数据:
(其中
为样本容量)
表一:
价格/(元/千克) | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) |
种类数 | 4 | 12 | 16 | 6 | 2 |
在调查中,记者还发现,各大品牌在馅料方面还做足了功课,满足了市民多样化的需求除了蜜枣、豆沙等传统馅料粽,很多品牌还推出了鲜肉、巧克力、海鲜等特色馅料粽在该商场内,记者随机对100名顾客的年龄和粽子口味偏好进行了调查,结果如表二.
表二:
| 喜欢传统馅料粽 | 喜欢特色馅料粽 | 总计 |
40岁以下 | 30 | 15 | 45 |
40岁及以上 | 50 | 5 | 55 |
总计 | 80 | 20 | 100 |
(1)根据表一估计该商场粽子的平均销售价(同一组中的数据用该组区间的中点值代表);
(2)根据表二信息能否有95%的把握认为顾客的粽子口味偏好与年龄有关?
参考公式和数据:


P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
某公司为了了解年研发资金投人量
(单位:亿元)对年销售额
(单位:亿元)的影响.对公司近
年的年研发资金投入量
和年销售额
的数据,进行了对比分析,建立了两个函数模型:①
,②
,其中
、
、
、
均为常数,
为自然对数的底数.并得到一些统计量的值.令
,
,经计算得如下数据:
(1)请从相关系数的角度,分析哪一个模型拟合程度更好?
(2)(ⅰ)根据(1)的选择及表中数据,建立
关于
的回归方程;
(ⅱ)若下一年销售额
需达到
亿元,预测下一年的研发资金投入量
是多少亿元?
附:①相关系数
,
回归直线
中公式分别为:
,
;
②参考数据:
,
,
.














![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
(1)请从相关系数的角度,分析哪一个模型拟合程度更好?
(2)(ⅰ)根据(1)的选择及表中数据,建立


(ⅱ)若下一年销售额



附:①相关系数

回归直线



②参考数据:


