- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额
(亿元)与该地区粮食产量
(万亿吨)之间存在着线性相关关系.统计数据如下表:
(1)请根据如表所给的数据,求出
关于
的线性回归直线方程
;
(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.
(参考公式:
,
)


年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
补贴额![]() | 9 | 10 | 12 | 11 | 8 |
粮食产量![]() | 23 | 25 | 30 | 26 | 21 |
(1)请根据如表所给的数据,求出



(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.
(参考公式:


一次考试中,5名同学的数学、物理成绩如表所示:
请在图中的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;
要从4名数学成绩在90分以上的同学中选2名参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求随机变量X的分布列及数学期望
.
参考公式:线性回归方程
;,其中
,
.
学生 | ![]() | ![]() | ![]() | ![]() | ![]() |
数学![]() ![]() | 89 | 91 | 93 | 95 | 97 |
物理![]() ![]() | 87 | 89 | 89 | 92 | 93 |



参考公式:线性回归方程




一次考试中,5名同学的数学、物理成绩如表所示:
要从5名学生中选2名参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率
请在图中的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;
参考公式:线性回归方程
,其中
,
.
学生 | ![]() | ![]() | ![]() | ![]() | ![]() |
数学![]() ![]() | 89 | 91 | 93 | 95 | 97 |
物理![]() ![]() | 87 | 89 | 89 | 92 | 93 |


参考公式:线性回归方程




某地种植常规稻A和杂交稻B,常规稻A的亩产稳定为500公斤,今年单价为3.50元/公斤,估计明年单价不变的可能性为10%,变为3.60元/公斤的可能性为60%,变为3.70元/公斤的可能性为30%.统计杂交稻B的亩产数据,得到亩产的频率分布直方图如下;统计近10年来杂交稻B的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为
,并得到散点图如下,参考数据见下.
(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻B的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻B的亩产超过765公斤的概率;
(3)判断杂交稻B的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;调查得知明年此地杂交稻B的种植亩数预计为2万亩.若在常规稻A和杂交稻B中选择,明年种植哪种水稻收入更高?
统计参考数据:
,
,
,
,
附:线性回归方程
,
.

(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻B的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻B的亩产超过765公斤的概率;
(3)判断杂交稻B的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;调查得知明年此地杂交稻B的种植亩数预计为2万亩.若在常规稻A和杂交稻B中选择,明年种植哪种水稻收入更高?
统计参考数据:




附:线性回归方程


某地种植常规稻A和杂交稻B,常规稻A的亩产稳定为500公斤,统计近年来数据得到每年常规稻A的单价比当年杂交稻B的单价高50%.统计杂交稻B的亩产数据,得到亩产的频率分布直方图如下;统计近10年来杂交稻B的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为
,并得到散点图如下,参考数据见下.
(2)判断杂交稻B的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关,若相关,试根据以下统计的参考数据求出y关于x的线性回归方程;
(3)调查得到明年此地杂交稻B的种植亩数预计为2万亩,估计明年常规稻A的单价,若在常规稻A和杂交稻B中选择,明年种植哪种水稻收入更高?
统计参考数据:
,
,
,
,
附:线性回归方程
,
.

(2)判断杂交稻B的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关,若相关,试根据以下统计的参考数据求出y关于x的线性回归方程;
(3)调查得到明年此地杂交稻B的种植亩数预计为2万亩,估计明年常规稻A的单价,若在常规稻A和杂交稻B中选择,明年种植哪种水稻收入更高?
统计参考数据:




附:线性回归方程


随着我国经济的发展,居民的储蓄存款逐年增长.根据统计资料发现,某地区城乡居民的人民币储蓄存款年底余额
(单位:千亿元)与年份代码
的关系可用线性回归模型拟合.下表给出了年份代号
与对应年份的关系.
已知
,
.
(1)求
关于
的回归方程
;
(2)用所求回归方程预测该地区2018年(
)的人民币储蓄存款.
附:回归方程
中
,
.



年份 | 2013 | 2014 | 2015 | 2016 | 2017 |
时间代号![]() | 1 | 2 | 3 | 4 | 5 |
已知


(1)求



(2)用所求回归方程预测该地区2018年(

附:回归方程



某银行对某市最近5年住房贷款发放情况(按每年6月份与前一年6月份为1年统计)作了统计调查,得到如下数据:
(1)将上表进行如下处理:
,
得到数据:
试求
与
的线性回归方程
,再写出
与
的线性回归方程
.
(2)利用(1)中所求的线性回归方程估算2019年房贷发放数额.
参考公式:
, 
年份![]() | 2014 | 2015 | 2016 | 2017 | 2018 |
贷款![]() | 50 | 60 | 70 | 80 | 100 |
(1)将上表进行如下处理:

得到数据:
![]() | 1 | 2 | 3 | 4 | 5 |
![]() | 0 | 1 | 2 | 3 | 5 |
试求






(2)利用(1)中所求的线性回归方程估算2019年房贷发放数额.
参考公式:


某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:

(1)画出散点图;
(2)求线性回归方程;
(3)试预测广告费支出为10百万元时,销售额多大?

(1)画出散点图;
(2)求线性回归方程;
(3)试预测广告费支出为10百万元时,销售额多大?

某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:
(I)从这
年中随机抽取两年,求平均每台设备每年的维护费用至少有
年多于
万元的概率;
(II)求
关于
的线性回归方程;若该设备的价格是每台
万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?并说明理由.
参考公式:用最小二乘法求线性回归方程
的系数公式:
年份![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
维护费![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(I)从这



(II)求



参考公式:用最小二乘法求线性回归方程

