在一次抽样调查中测得样本的5个样本点,数值如下表:
 
0.25
0.5
1
2
4

16
12
5
2
1
 

(1)根据散点图判断,哪一个适宜作为关于的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果试建立之间的回归方程.(注意计算结果保留整数)
(3)由(2)中所得设z=+,试求z的最小值。
参考数据及公式如下:
当前题号:1 | 题型:解答题 | 难度:0.99
为了解春季昼夜温差大小与某种子发芽数之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了明天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:
日期
4月1日
4月7日
4月15日
4月21日
4月30日
温差x/℃
10
11
13
12
8
发芽数y/颗
23
25
30
26
16
 
从这5天中任选2天,记发芽的种子数分别为,求事件“君不小于25”的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5填中的另三天的数据,求出关于的线性回归方程,.
(参考公式:).
当前题号:2 | 题型:解答题 | 难度:0.99
某淘宝商城在2017年前7个月的销售额(单位:万元)的数据如下表,已知具有较好的线性关系. 
(1)求关于的线性回归方程;
(2)分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
.
当前题号:3 | 题型:解答题 | 难度:0.99
作为加班拍档、创业伴侣、春运神器,曾几何时,方便面是我们生活中重要的“朋友”,然而这种景象却在近年出现了戏剧性的逆转.统计显示.2011年之前,方便面销量在中国连续年保持两位数增长,2013年的年销量更是创下亿包的辉煌战绩;但2013年以来,方便面销量却连续3年下跌,只剩亿包,具体如下表.相较于方便面,网络订餐成为大家更加青睐的消费选择.近年来,网络订餐市场规模的“井喷式”增长,也充分反映了人们消费方式的变化.
全国方便面销量情况(单位“亿包/桶)(数据:世界方便面协会)
年份




时间代号




年销量(亿包/桶)




 
(1)根据上表,求关于的线性回归方程.用所求回归方程预测2017 年()方便面在中国的年销量;
(2)方便面销量遭遇滑铁卢受到哪些因素影响? 中国的消费业态发生了怎样的转变? 某媒体记者随机对身边的位朋友做了一次调查,其中位受访者表示超过年未吃过方便面,位受访者认为方便面是健康食品;而位受访者有过网络订餐的经历,现从这人中抽取人进行深度访谈,记表示随机抽取的人认为方便面是健康食品的人数,求随机变量的分布列及数学期望.
参考公式:回归方程:,其中.
参考数据:.
当前题号:4 | 题型:解答题 | 难度:0.99
为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取名学生,根据测量数据的散点图可以看出之间有线性相关关系,设其回归直线方程为已知.该班某学生的脚长为,据此估计其身高为__________.
当前题号:5 | 题型:填空题 | 难度:0.99
为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:

(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图,根据散点图判断:与y=哪一个作为繁殖的个数y关于时间x变化的回归方程类型为最佳?(给出判断即可,不必说明理由)






3.5
62.83
3.53
17.5
596.505
12.04
 
其中
(2)根据(1)的判断最佳结果及表中的数据,建立y关于x 的回归方程。
参考公式:
当前题号:6 | 题型:解答题 | 难度:0.99
自2018年元月2日开始,中国中东部大部地区出现今年首次大范围雨雪天气,雨雪天气对民众的生活有显著影响.我国科学工作者研究了山东冬季短时间内积雪深度(单位:)和降雪量(单位:)的关系为,当降雪量为5时,积雪深度为3.9.
下表为山东甲地未来24小时内降雪量及其概率:
24小时内降雪量(单位:)






概率
0.20
0.40
0.20
0.1
0.05
0.05
 
根据以往的经验,甲地某工程施工期间的积雪深度(单位:)对工期的影响如下表:
积雪深度()




工期延误天数
0
2
6
10
 
(1)已知24小时内降雪量大于10的降雪过程为暴雪,下表为山东5个城市24小时内的积雪深度测量值.
城市
济南
菏泽
潍坊
青岛
烟台
积雪深度()
2.025
3.9
7.85
15.15
22.65
 
现从上述5个城市中,随机抽取2个,求抽取的2个城市降雪量均为暴雪的概率;
(2)求甲地在24小时内降雪量至少是5的条件下,工期延误不超过6天的概率;
(3)若甲地此工程每延误一天,损耗10000元,求该工程损耗的数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:

1
2
3
4
5

7.0
6.5
5.5
3.8
2.2
 
已知具有线性相关关系,
(1)求关于的线性回归方程
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润取到最大值?(保留一位小数)
参考数据及公式:
当前题号:8 | 题型:解答题 | 难度:0.99
2015年一交警统计了某路段过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:

(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
(3)试根据(2)求出的线性回归方程,预测在2016年该路段路况及相关安全设施等不变的情况下,车速达到110时,可能发生的交通事故次数.
(附:,其中为样本平均值)
当前题号:9 | 题型:解答题 | 难度:0.99