- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为
,求
的分布列和数学期望;
②根据上表数据,求物理成绩
关于数学成绩
的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程
,
其中
,
.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
数学成绩![]() | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成绩![]() | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为


②根据上表数据,求物理成绩


附:线性回归方程

其中


![]() | ![]() | ![]() | ![]() |
76 | 83 | 812 | 526 |
自贡农科所实地考察,研究发现某贫困村适合种植
,
两种药材,可以通过种植这两种药材脱贫.通过大量考察研究得到如下统计数据:药材
的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:
药材
的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:

(1)若药材
的单价
(单位:元/公斤)与年份编号
具有线性相关关系,请求出
关于
的回归直线方程,并估计2020年药材
的单价;
(2)用上述频率分布直方图估计药材
的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材
还是药材
?并说明理由.
参考公式:
,
(回归方程
中)



编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
单价(元/公斤) | 18 | 20 | 23 | 25 | 29 |
药材


(1)若药材






(2)用上述频率分布直方图估计药材



参考公式:



当前,旅游已经成为新时期人民群众美好生活和精神文化需求的重要内容.旅游是综合性产业,是拉动经济发展的重要动力,也为整个经济结构调整注入活力.文化旅游产业研究院发布了《2019年中国文旅产业发展趋势报告》,报告指出:旅游业稳步增长,每年占国家GDP总量的比例逐年增加,如图及下表为2014年到2018年的相关统计数据.

(1)根据以上数据,求出占比
关于年份
的线性回归方程
;
(2)根据(1)所求线性回归方程,预测2019年的旅游收入所占的比例.
附:
.
旅游收入占国家GDP总量比例趋势 | |||||
年份:![]() | 1 | 2 | 3 | 4 | 5 |
占比:![]() | 10.4 | 10.8 | 11.0 | 11.0 | 11.2 |

(1)根据以上数据,求出占比



(2)根据(1)所求线性回归方程,预测2019年的旅游收入所占的比例.
附:

已知回归直线方程
中的
,若根据数据(x1,y1),(x2,y2)…(xn,yn)所求出的线性回归直线方程为
,根据数据(
,y1),(
,y2)…(
,yn)所求出的线性回归直线方程为
,则( )







A.![]() | B.![]() | C.![]() | D.![]() |
某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为
,
.

(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 1 | 3 | 4 | | 7 |
表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为


为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高
和体重
数据如下表所示:
该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.

(1)调查员甲计算得出该组数据的线性回归方程为
,请你据此预报一名身高为
的女高中生的体重;
(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为
的女高中生的体重;
(3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.
附:对于一组数据
,其回归方程
的斜率和截距的最小二乘法估计分别为:
.


编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高![]() | 164 | 160 | 158 | 172 | 162 | 164 | 174 | 166 |
体重![]() | 60 | 46 | 43 | 48 | 48 | 50 | 61 | 52 |
该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.

(1)调查员甲计算得出该组数据的线性回归方程为


(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为

(3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.
附:对于一组数据



某市为创建全国文明城市,推出“行人闯红灯系统建设项目”,将针对闯红灯行为进行曝光.交警部门根据某十字路口以往的监测数据,从穿越该路口的行人中随机抽查了
人,得到如图示的列联表:
(1)能否有
的把握认为闯红灯行为与年龄有关?
(2)下图是某路口监控设备抓拍的
个月内市民闯红灯人数的统计图.请建立
与
的回归方程
,并估计该路口
月份闯红灯人数.

附:
,
参考数据:
,

| 闯红灯 | 不闯红灯 | 合计 |
年龄不超过![]() | ![]() | ![]() | ![]() |
年龄超过![]() | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)能否有

(2)下图是某路口监控设备抓拍的






附:



![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考数据:


在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计时,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差.某高二班主任为了了解学生的偏科情况,对学生数学偏差
(单位:分)与历史偏差
(单位:分)之间的关系进行学科偏差分析,决定从全班52位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
(1)已知
与
之间具有线性相关关系,求
关于
的线性回归方程
;
(2)若这次考试该班数学平均分为118分,历史平均分为
,试预测数学成绩126分的同学的历史成绩.
附:参考公式与参考数据
,
,
,
.


学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差![]() | 20 | 15 | 13 | 3 | 2 | ![]() | ![]() | ![]() |
历史偏差![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)已知





(2)若这次考试该班数学平均分为118分,历史平均分为

附:参考公式与参考数据



