- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 绘制散点图
- 根据散点图判断是否线性相关
- 由散点图画求近似回归直线
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
调查某公司的五名推销员,其工作年限与年推销金额如下表:
(1)在图中画出年推销金额关于工作年限的散点图,并从散点图中发现工作年限与年推销金额之间关系的一般规律;

(2)利用最小二乘法求年推销金额关于工作年限的回归直线方程;
(3)利用(2)中的回归方程,预测工作年限为10年的推销员的年推销金额.
附:
,
=
-
.
推销员 | A | B | C | D | E |
工作年限x(年) | 2 | 3 | 5 | 7 | 8 |
年推销金额y(万元) | 3 | 3.5 | 4 | 6.5 | 8 |
(1)在图中画出年推销金额关于工作年限的散点图,并从散点图中发现工作年限与年推销金额之间关系的一般规律;

(2)利用最小二乘法求年推销金额关于工作年限的回归直线方程;
(3)利用(2)中的回归方程,预测工作年限为10年的推销员的年推销金额.
附:





春节期间,由于高速免费,车流量逐步增加,某高速口统计了5天中的车流量与空气质量指数的关系,所得数据如下表所示:
(1)在下列网格纸中绘制出散点图;

(2)由(1)判断是否能用线性回归模型拟合y与x的关系,并用相关系数加以说明;
(3)记这5天的空气质量指数的平均数为
,若从5天中任选2天的数据作调研,求这2天中恰有1天的空气质量指数高于
的概率.
参考公式:相关系数
.参考数据:
,
,
.
车流量x(万辆) | 12 | 12.5 | 13 | 13.5 | 14 |
空气质量指数y | 74 | 76 | 78 | 77 | 80 |
(1)在下列网格纸中绘制出散点图;

(2)由(1)判断是否能用线性回归模型拟合y与x的关系,并用相关系数加以说明;
(3)记这5天的空气质量指数的平均数为


参考公式:相关系数




越接近高考学生焦虑程度越强,四个高三学生中大约有一个有焦虑症,经有关机构调查,得出距离高考周数与焦虑程度对应的正常值变化情况如下表周数:
回归方程
中
,
.
参考数据:
,
.
(1)作出散点图;

(2)根据上表数据用最小二乘法求出y关于x的线性回方程
(精确到0.01)
(3)根据经验观测值为正常值的0.85~1.06为正常,若1.06~1.12为轻度焦虑,1.12~1.20为中度焦虑,1.20及以上为重度焦虑.若为中度焦虑及以上,则要进行心理疏导.若一个学生在距高考第二周时观测值为103,则该学生是否需要进行心理疏导?
周数x | 6 | 5 | 4 | 3 | 2 | 1 |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
回归方程



参考数据:


(1)作出散点图;

(2)根据上表数据用最小二乘法求出y关于x的线性回方程

(3)根据经验观测值为正常值的0.85~1.06为正常,若1.06~1.12为轻度焦虑,1.12~1.20为中度焦虑,1.20及以上为重度焦虑.若为中度焦虑及以上,则要进行心理疏导.若一个学生在距高考第二周时观测值为103,则该学生是否需要进行心理疏导?
在某种产品表面进行腐蚀刻线实验,得到腐蚀深度y与腐蚀时间x之间的一组观察值如下表:
(1)画出散点图;
(2)求y对x的线性回归方程;
(3)利用线性回归方程预测时间为100 s时腐蚀深度为多少.
x/s | 5 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 70 | 90 | 120 |
y/μm | 6 | 10 | 10 | 13 | 16 | 17 | 19 | 23 | 25 | 29 | 46 |
(1)画出散点图;
(2)求y对x的线性回归方程;
(3)利用线性回归方程预测时间为100 s时腐蚀深度为多少.
调查某公司的五名推销员,其工作年限与年推销金额如下表:
(1)在图中画出年推销金额关于工作年限的散点图,并从散点图中发现工作年限与年推销金额之间关系的一般规律;

(2)利用最小二乘法求年推销金额关于工作年限的回归直线方程;
(3)利用(2)中的回归方程,预测工作年限为10年的推销员的年推销金额.
推销员 | A | B | C | D | E |
工作年限x(年) | 2 | 3 | 5 | 7 | 8 |
年推销金额y(万元) | 3 | 3.5 | 4 | 6.5 | 8 |
(1)在图中画出年推销金额关于工作年限的散点图,并从散点图中发现工作年限与年推销金额之间关系的一般规律;

(2)利用最小二乘法求年推销金额关于工作年限的回归直线方程;
(3)利用(2)中的回归方程,预测工作年限为10年的推销员的年推销金额.
某产品的广告支出
(单位:万元)与销售收入
(单位:万元)之间有下表所对应的数据:
(1)画出表中数据的散点图;
(2)求出
对
的线性回归方程;
(3)若广告费为9万元,则销售收入约为多少万元?
参考公式:
,
.


广告支出x(单位:万元) | 1 | 2 | 3 | 4 |
销售收入支y(单位:万元) | 12 | 28 | 42 | 56 |
(1)画出表中数据的散点图;
(2)求出


(3)若广告费为9万元,则销售收入约为多少万元?
参考公式:


某种产品的广告费用支出
万元与销售额
万元之间有如下的对应数据:
(1)画出上表数据的散点图;
(2)根据上表提供的数据,求出
关于
的线性回归方程;
(3)据此估计广告费用为
万元时,所得的销售收入.
(参考数值:
,
)


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)画出上表数据的散点图;
(2)根据上表提供的数据,求出


(3)据此估计广告费用为

(参考数值:


下表是A市住宅楼房屋销售价格



(I)画出数据对应的散点图;
(II)设线性回归方程为





(III)据(II)的结果,估计面积为

有10名同学高一(x)和高二(y)的数学成绩如下:
(1)画出散点图;
(2)求y对x的回归方程.
高一成绩x | 74 | 71 | 72 | 68 | 76 | 73 | 67 | 70 | 65 | 74 |
高二成绩y | 76 | 75 | 71 | 70 | 76 | 79 | 65 | 77 | 62 | 72 |
(1)画出散点图;
(2)求y对x的回归方程.