- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某购物网站对在7座城市的线下体验店的广告费指出
万元和销售额
万元的数据统计如下表:
(1)若用线性回归模型拟合y与x关系,求y关于x的线性回归方程.
(2)若用对数函数回归模型拟合y与x的关系,可得回归方程
,经计算对数函数回归模型的相关指数约为0.95,请说明选择哪个回归模型更合适,并用此模型预测A城市的广告费用支出8万元时的销售额.
参考数据:
,
,
,
,
,
.
参考公式:
,
相关指数:
(注意:
与
公式中的相似之处)


城市 | A | B | C | D | E | F | G |
广告费支出![]() | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额![]() | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合y与x关系,求y关于x的线性回归方程.
(2)若用对数函数回归模型拟合y与x的关系,可得回归方程

参考数据:






参考公式:


相关指数:



2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:
(1)研究员甲根据以上数据认为
与
具有线性回归关系,请帮他求出
关于
的线.性回归方程
(保留小数点后两位有效数字)
(2)研究员乙根据以上数据得出
与
的回归模型:
.为了评价两种模型的拟合效果,请完成以下任务:
①完成下表(计算结果精确到0.01元)(备注:
称为相应于点
的残差);
②分别计算模型甲与模型乙的残差平方和
及
,并通过比较
的大小,判断哪个模型拟合效果更好.
(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:
.
参考数据:
.
生猪存栏数量![]() | 2 | 3 | 4 | 5 | 8 |
头猪每天平均成本![]() | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究员甲根据以上数据认为





(2)研究员乙根据以上数据得出



①完成下表(计算结果精确到0.01元)(备注:


生猪存栏数量![]() | 2 | 3 | 4 | 5 | 8 | |
头猪每天平均成本![]() | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估计值![]() | | | | | |
残差![]() | | | | | | |
模型乙 | 估计值![]() | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
残差![]() | 0 | 0 | 0 | 0.14 | 0.1 |
②分别计算模型甲与模型乙的残差平方和



(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:

参考数据:

为了解篮球爱好者小张的投篮命中率与打篮球时间之间的关系,下表记录了小张某月1号到5号每天打篮球时间
(单位:小时)与当天投篮命中率
之间的关系:
(1)求小张这
天的平均投篮命中率;
(2)利用所给数据求小张每天打篮球时间
(单位:小时)与当天投篮命中率
之间的线性回归方程
;(参考公式:
)
(3)用线性回归分析的方法,预测小李该月
号打
小时篮球的投篮命中率.


时间![]() | 1 | 2 | 3 | 4 | 5 |
命中率![]() | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小张这

(2)利用所给数据求小张每天打篮球时间




(3)用线性回归分析的方法,预测小李该月


已知z,y之间的一组数据如下表:
(1)从x ,y中各取一个数,求x+y≥10的概率;
(2)对于表中数据,甲、乙两同学给出的拟合直线分别为
与
,试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好.
x | 1 | 3 | 6 | 7 | 8 |
y | 1 | 2 | 3 | 4 | 5 |
(1)从x ,y中各取一个数,求x+y≥10的概率;
(2)对于表中数据,甲、乙两同学给出的拟合直线分别为


有人收集了某10年中某城市居民年收入(即该城市所有居民在一年内收入的总和)与某种商品的销售额的相关数据:

且已知
= 380.0
(1)求第10年的年收入x10;
(2)收入x与该种商品的销售额y之间满足线性回归方程

.
(i)10年的销售额y10;
(ii)居民收入达到40.0亿元,估计这种商品的销售额是多少?(精确到0.01)
附加:(1)回归方程
中,
,
.
(2)
,
,

且已知

(1)求第10年的年收入x10;
(2)收入x与该种商品的销售额y之间满足线性回归方程



(i)10年的销售额y10;
(ii)居民收入达到40.0亿元,估计这种商品的销售额是多少?(精确到0.01)
附加:(1)回归方程



(2)



国家“十三五”计划,提出创新兴国,实现中国创新,某市教育局为了提高学生的创新能力,把行动落到实处,举办一次物理、化学综合创新技能大赛,某校对其甲、乙、丙、丁四位学生的物理成绩(x)和化学成绩(y)进行回归分析,求得回归直线方程为
=1.5x﹣35.由于某种原因,成绩表(如表所示)中缺失了乙的物理和化学成绩.
(1)请设法还原乙的物理成绩m和化学成绩n;
(2)在全市物理化学科技创新比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于160分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为ξ,试根据上表所提供数据,预测该校所获奖章数ξ的分布列与数学期望.

| 甲 | 乙 | 丙 | 丁 |
物理成绩(x) | 75 | m | 80 | 85 |
化学成绩(y) | 80 | n | 85 | 95 |
综合素质 (x+y) | 155 | 160 | 165 | 180 |
(1)请设法还原乙的物理成绩m和化学成绩n;
(2)在全市物理化学科技创新比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于160分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为ξ,试根据上表所提供数据,预测该校所获奖章数ξ的分布列与数学期望.
某种产品广告的支出x与销售收入y(单位:万元)之间有下列所示的对应数据:
若由数据知y对x呈线性相关关系,
(1)利用最小二乘法求出y关于x的线性回归方程
;
(2)估计广告支出为9万元时,销售收入是多少?
(参考公式及数据:
,
,
,
)
广告支出x | 1 | 2 | 3 | 4 |
销售收入y | 12 | 28 | 42 | 56 |
若由数据知y对x呈线性相关关系,
(1)利用最小二乘法求出y关于x的线性回归方程

(2)估计广告支出为9万元时,销售收入是多少?
(参考公式及数据:




近年来,随着国家综合国力的提升和科技的进步,截至
年底,中国铁路运营里程达
万千米,这个数字比
年增长了
倍;高铁运营里程突破
万千米,占世界高铁运营里程的
以上,居世界第一位.如表截取了
年中国高铁密度的发展情况(单位:千米/万平方千米).
已知高铁密度
与年份代码
之间满足关系式
(
为大于
的常数).
(1)根据所给数据,求
关于
的回归方程(精确到
位);
(2)利用(1)的结论,预测到哪一年,高铁密度会超过
千米/万平方千米.
参考公式:设具有线性相关系的两个变量
的一组数据为
,则回归方程
的系数:
,
参考数据:
,
,
,
,
,
.







年份 | ![]() | ![]() | ![]() | ![]() | ![]() |
年份代码 | ![]() | ![]() | ![]() | ![]() | ![]() |
高铁密度 | ![]() | ![]() | ![]() | ![]() | ![]() |
已知高铁密度





(1)根据所给数据,求



(2)利用(1)的结论,预测到哪一年,高铁密度会超过

参考公式:设具有线性相关系的两个变量





参考数据:






下列说法错误的是( )
A.在回归分析中,相关指数![]() |
B.线性回归方程对应的直线![]() |
C.在线性回归分析中,相关系数为![]() ![]() |
D.在回归直线![]() ![]() ![]() |