- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司近年来科研费用支出
万元与公司所获得利润
万元之间有如下的统计数据:
(1)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.
参考公式:用最小二乘法求线性回归方程
的系数公式:

参考数据:2×18+3×27+4×32+5×35=420


x | 2 | 3 | 4 | 5 |
Y | 18 | 27 | 32 | 35 |
(1)请根据上表提供的数据,用最小二乘法求出



(2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.
参考公式:用最小二乘法求线性回归方程


参考数据:2×18+3×27+4×32+5×35=420
某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
由表中数据得线性回归方程
,预测当气温为-4℃时用电量度数为( )
气温x(℃) | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | 38 | 64 |
由表中数据得线性回归方程

A.68 | B.67 | C.65 | D.64 |
已知变量
,
具有线性相关关系,它们之间的一组数据如下表所示,若
关于
的线性回归方程为
,则
的值为( )






![]() | 1 | 2 | 3 | 4 |
![]() | 0.1 | 1.8 | ![]() | 4 |
A.3.1 | B.2.9 | C.2 | D.3 |
某研究机构在对具有线性相关的两个变量
进行统计分析时,得到如下数据,由表中数据求得
关于
的回归方程为
,则在这些样本中任取一点,该点落在回归直线下方的概率为( )




![]() | 3 | 5 | 7 | 9 |
![]() | 1 | 2 | 4 | 5 |
A.![]() | B.![]() | C.![]() | D.0 |
“双十一网购狂欢节”源于淘宝商城(天猫)
年
月
日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是
月
日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商为分析近
年“双十一”期间的宣传费用
(单位:万元)和利润
(单位:十万元)之间的关系,搜集了相关数据,得到下列表格:
(1)请用相关系数
说明
与
之间是否存在线性相关关系(当
时,说明
与
之间具有线性相关关系);
(2)建立
关于
的线性回归方程(系数精确到
),预测当宣传费用为
万元时的利润.
附参考公式:回归方程
中
和
最小二乘估计公式分别为
,
,相关系数
参考数据:
,
,
,








![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)请用相关系数






(2)建立




附参考公式:回归方程






参考数据:




某餐厅的原料支出
与销售额
(单位:万元)之间有如下数据,根据表中提供的数据,用最小二乘法得出
与
的线性回归方程
,则表中
的值为________.






![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 25 | 35 | ![]() | 55 | 75 |
在测量一根新弹簧的劲度系数时,测得了如下的结果:
(1)请在下图坐标系中画出上表所给数据的散点图;

(2)若弹簧长度与所挂物体重量之间的关系具有线性相关性,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(3)根据回归方程,求挂重量为
的物体时弹簧的长度.所求得的长度是弹簧的实际长度吗?为什么?
注:本题中的计算结果保留小数点后两位.
(参考公式:
,
)
(参考数据:
,
)
所挂重量(![]() | 1 | 2 | 3 | 5 | 7 | 9 |
弹簧长度(![]() | 11 | 12 | 12 | 13 | 14 | 16 |
(1)请在下图坐标系中画出上表所给数据的散点图;

(2)若弹簧长度与所挂物体重量之间的关系具有线性相关性,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

(3)根据回归方程,求挂重量为

注:本题中的计算结果保留小数点后两位.
(参考公式:


(参考数据:


下表是某两个相关变量x,y的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程
,那么表中t的值为( )

x | 3 | 4 | 5 | 6 |
y | 2.5 | t | 4 | 4.5 |
A.3 | B.3.15 | C.3.5 | D.4.5 |
政府工作报告指出,2018年我国深入实施创新驱动发展战略,创新能力和效率进一步提升;2019年要提升科技支撑能力,健全以企业为主体的产学研一体化创新机制.某企业为了提升行业核心竞争力,逐渐加大了科技投入;该企业连续6年来的科技投入
(百万元)与收益
(百万元)的数据统计如下:
根据散点图的特点,甲认为样本点分布在指数曲线
的周围,据此他对数据进行了一些初步处理,如下表:
其中
,
.
(1)(i)请根据表中数据,建立
关于
的回归方程(保留一位小数);
(ii)根据所建立的回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中
)?
(2)乙认为样本点分布在二次曲线
的周围,并计算得回归方程为
,以及该回归模型的相关指数
,试比较甲、乙两位员工所建立的模型,谁的拟合效果更好.
附:对于一组数据
,
,…,
,其回归直线方程
的斜率和截距的最小二乘估计分别为
,
,相关指数:
.


科技投入![]() | 2 | 4 | 6 | 8 | 10 | 12 |
收益![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
根据散点图的特点,甲认为样本点分布在指数曲线

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
其中


(1)(i)请根据表中数据,建立


(ii)根据所建立的回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中

(2)乙认为样本点分布在二次曲线



附:对于一组数据






