- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若某地财政收入
与支出
满足线性回归方程
(单位:亿元),其中
,
,
,如果今年该地区财政收入10亿元,年支出预计不会超过( )






A.9亿元 | B.9.5亿元 | C.10亿元 | D.10.5亿元 |
有一个同学家开了一个小卖部,他为了研究气温对热饮饮料销售的影响.经过统计,得到一个卖出的热饮杯数与当天气温的散点图和对比表

(参考公式)
,
(参考数据)
,
,
,
.样本中心点为
.
(1)从散点图可以发现,各点散布在从左上角到右下角的区域里.因此,气温与当天热饮销售杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少.统计中常用相关系数
来衡量两个变量之间线性关系的强弱.统计学认为,对于变量
、
,如果
,那么负相关很强;如果
,那么正相关很强;如果
,那么相关性一般;如果
,那么相关性较弱.请根据已知数据,判断气温与当天热饮销售杯数相关性的强弱.
(2)(i)请根据已知数据求出气温与当天热饮销售杯数的线性回归方程;
(ii)记
为不超过
的最大整数,如
,
.对于(1)中求出的线性回归方程
,将
视为气温与当天热饮销售杯数的函数关系.已知气温
与当天热饮每杯的销售利润
的关系是
(单位:元),请问当气温
为多少时,当天的热饮销售利润总额最大?

摄氏温度 | —5 | 4 | 7 | 10 | 15 | 23 | 30 | 36 |
热饮杯数 | 162 | 128 | 115 | 135 | 89 | 71 | 63 | 37 |
(参考公式)


(参考数据)





(1)从散点图可以发现,各点散布在从左上角到右下角的区域里.因此,气温与当天热饮销售杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少.统计中常用相关系数







(2)(i)请根据已知数据求出气温与当天热饮销售杯数的线性回归方程;
(ii)记










某餐厅的原料费支出
与销售额
(单位:元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出
与
的线性回归方程为
,则表中
的值为( )






![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 25 | 35 | ![]() | 55 | 75 |
A.50 | B.55 | C.60 | D.65 |
据统计,某地区植被覆盖面积
公顷
与当地气温下降的度数
之间呈线性相关关系,对应数据如下:
请用最小二乘法求出y关于x的线性回归方程;
根据
中所求线性回归方程,如果植被覆盖面积为300公顷,那么下降的气温大约是多少
?
参考公式:线性回归方程
;其中
,
.



![]() ![]() | 20 | 40 | 60 | 80 |
![]() | 3 | 4 | 4 | 5 |




参考公式:线性回归方程



基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:

(1)请在给出的坐标纸中作出散点图;
(2)求y关于x的线性回归方程,并预测该公司2018年2月份的市场占有率;
参考公式:回归直线方程为
其中:
,
月份 | 2017.8 | 2017.9 | 2017.10 | 2017.11 | 2017.12 | 2018.1 |
月份代码x | 1 | 2 | 3 | 4 | 5 | 6 |
市 场占有率y(%) | 11 | 13 | 16 | 15 | 20 | 21 |

(1)请在给出的坐标纸中作出散点图;
(2)求y关于x的线性回归方程,并预测该公司2018年2月份的市场占有率;
参考公式:回归直线方程为



“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是近几年我国某地区新能源乘用车的年销售量与年份的统计表:

某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:

(1)求新能源乘用车的销量
关于年份
的线性相关系数
,并判断
与
是否线性相关;
(2)请将上述
列联表补充完整,并判断是否有
的把握认为购车车主是否购置新能源乘用车与性别有关;
(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为
,求
的数学期望与方差.
参考公式:
,
,其中
.
,若
,则可判断
与
线性相交.

某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:

(1)求新能源乘用车的销量





(2)请将上述


(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为


参考公式:








(2017·深圳二模)在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.
(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y-0.05x2-1.4,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式:
x(个) | 2 | 3 | 4 | 5 | 6 |
y(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y-0.05x2-1.4,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式:

某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数
(单位:百人)对年产能
(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.

(1)根据散点图判断:
与
哪一个适宜作为年产能
关于投入的人力
的回归方程类型?并说明理由?
(2)根据(1)的判断结果及相关的计算数据,建立
关于
的回归方程;
(3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?
附注:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,(说明:
的导函数为
)


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |

(1)根据散点图判断:




(2)根据(1)的判断结果及相关的计算数据,建立


(3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?
附注:对于一组数据






