- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- + 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某技校开展技能大赛,甲、乙两班各选取5名学生加工某种零件,在4个小时内每名学生加工的合格零件数的统计数据的茎叶图如图所示,已知甲班学生在4个小时内加工的合格零件数的平均数为21,乙班学生在4个小时内加工的合格零件数的平均数不低于甲班的平均数.

(1)求
的值;
(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差
和
,并由此比较两班学生的加工水平的稳定性.

(1)求

(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差


有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A、B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分为:5、8、9、9、9,B班5名学生得分为:6、7、8、9、10.
(1)请你判断A、B两个班中哪个班的问卷得分要稳定一些,并说明你的理由;
(2)求如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.
(1)请你判断A、B两个班中哪个班的问卷得分要稳定一些,并说明你的理由;
(2)求如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.
(2014·长春模拟)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:
(1)画出茎叶图.
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、方差,并判断选谁参加比赛更合适?
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图.
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、方差,并判断选谁参加比赛更合适?






A.频率 | B.平均数 | C.独立性检验 | D.方差 |
甲、乙两名同学在5次数学考试中,成绩统计图用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用
、
表示,则下列结论正确的是( )




A.![]() | B.![]() |
C.![]() | D.![]() |
甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如表:

从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是 ( )

从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是 ( )
A.甲 | B.乙 | C.丙 | D.丁 |
某赛季,甲、乙两名篮球运动员都参加了
场比赛,他们所有比赛得分的情况如下:
甲:
;
乙:
.
(1)求甲、乙两名运动员得分的中位数.
(2)分别求甲、乙两名运动员得分的平均数、方差,你认为哪位运动员的成绩更稳定?

甲:

乙:

(1)求甲、乙两名运动员得分的中位数.
(2)分别求甲、乙两名运动员得分的平均数、方差,你认为哪位运动员的成绩更稳定?
下列四种说法中正确的有______.(填序号)①数据2,2,3,3,4,6,7,3的众数与中位数相等;②数据1,3,5,7,9的方差是数据2,6,10,14,18的方差的一半;③一组数据的方差大小反映该组数据的波动性,若方差越大,则波动性越大,方差越小,则波动性越小.④频率分布直方图中各小长方形的面积等于相应各组的频数.
甲、乙两名技工在相同的条件下生产某种零件,连续6天中,他们日加工的合格零件数的统计数据的茎叶图,如图所示

(1)写出甲、乙的中位数和众数;
(2)计算甲、乙的平均数与方差,并依此说明甲、乙两名技工哪名更为优秀.

(1)写出甲、乙的中位数和众数;
(2)计算甲、乙的平均数与方差,并依此说明甲、乙两名技工哪名更为优秀.
某位同学将自己近10次的数学考试成绩一一记录进行分析.10次的成绩分别记为x1,x2,…x10,下面给出的指标可以用来评估该同学数学成绩稳定程度的是( )
A.x1,x2,…x10的平均数 | B.x1,x2,…x10的标准差 |
C.x1,x2,…x10的最大值 | D.x1,x2,…x10的中位数 |