- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- + 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)
①甲地5个数据的中位数为24,众数为22;
②乙地5个数据的中位数为27,总体均值为24;
③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.
则肯定进入夏季的地区有_____ .
①甲地5个数据的中位数为24,众数为22;
②乙地5个数据的中位数为27,总体均值为24;
③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.
则肯定进入夏季的地区有
某篮球教练对甲乙两位运动员在近五场比赛中的得分情况统计如下图所示,根据图表给出如下结论:(1)甲乙两人得分的平均数相等且甲的方差比乙的方差小;(2)甲乙两人得分的平均数相等且甲的方差比乙的方差大;(3)甲的成绩在不断提高,而乙的成绩无明显提高;(4)甲的成绩较稳定,乙的成续基本呈上升状态;结论正确的是( )


A.(1)(3) | B.(1)(4) | C.(2)(3) | D.(2)(4) |
甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如下表:
从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是( )
| 甲 | 乙 | 丙 | 丁 |
平均成绩![]() | 89 | 89 | 86 | 85 |
方差![]() | 2.1 | 3.5 | 2.1 | 5.6 |
从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是( )
A.甲 | B.乙 | C.丙 | D.丁 |
某工厂有甲、乙两条流水线同时生产直径为
的零件,各抽取10件进行测量,其结果如下图所示,则以下结论不正确的是( )



A.甲流水线生产的零件直径的极差为![]() |
B.乙流水线生产的零件直径的中位数为![]() |
C.乙流水线生产的零件直径比甲流水线生产的零件直径稳定 |
D.甲流水线生产的零件直径的平均值小于乙流水线生产的零件直径的平均值 |
已知数据
,
,
,
,
的平均值为2,方差为1,则数据
,
,
,
相对于原数据( )









A.一样稳定 | B.变得比较稳定 | C.变得比较不稳定 | D.稳定性不可以判断 |
在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是( )
甲地:中位数为2,极差为5; 乙地:总体平均数为2,众数为2;
丙地:总体平均数为1,总体方差大于0; 丁地:总体平均数为2,总体方差为3.
甲地:中位数为2,极差为5; 乙地:总体平均数为2,众数为2;
丙地:总体平均数为1,总体方差大于0; 丁地:总体平均数为2,总体方差为3.
A.甲地 | B.乙地 | C.丙地 | D.丁地 |
甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:82,81,79,78,95,88,93,84
乙:92,95,80,75,83,80,90,85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
甲:82,81,79,78,95,88,93,84
乙:92,95,80,75,83,80,90,85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
某特长班有男生和女生各10人,统计他们的身高,其数据(单位:cm)如下面的茎叶图所示,则下列结论正确的是( )


A.女生身高的极差为12 | B.男生身高的均值较大 |
C.女生身高的中位数为165 | D.男生身高的方差较小 |
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )
A.甲地:总体均值为3,中位数为4 |
B.乙地:总体均值为1,总体方差大于0 |
C.丙地:总体均值为2,总体方差为3 |
D.丁地:中位数为2,众数为3 |
甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用
、
表示,则下列结论正确的是( )




A.![]() | B.![]() |
C.![]() | D.![]() |