刷题首页
题库
高中数学
题干
某人沿固定路线开车上班,沿途共有
个红绿灯,他对过去
个工作日上班途中的路况进行了统计,得到了如表的数据:
上班路上遇见的红灯数
天数
若一路绿灯,则他从家到达公司只需用时
分钟,每遇一个红灯,则会多耗时
分钟,以频率作为概率的估计值
(1)试估计他平均每天上班需要用时多少分钟?
(2)若想以不少于
的概率在早上
点前(含
点)到达公司,他最晚何时要离家去公司?
(3)公司规定,员工应早上
点(含
点)前打卡考勤,否则视为迟到,每迟到一次,会被罚款
元.因某些客观原因,在接下来的
个工作日里,他每天早上只能
从家出发去公司,求他因迟到而被罚款的期望.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-21 09:41:12
答案(点此获取答案解析)
同类题1
某校高三数学备课组为了更好地制定复习计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:
期末
分数段
(0,60)
60,75)
75,90)
90,105)
105,120)
120,150
人数
5
10
15
10
5
5
“过关”
人数
1
2
9
7
3
4
(1)有以上统计数据完成如下2
2列联表,并判断是否有95%的把握认为期末数学成绩不低于90分与测试“过关”有关?说明你的理由;
分数低于90分人数
分数不低于90分人数
总计
“过关”人数
“不过关”人数
总计
(2)若高三年级学生在分数段90,120)内的“过关”人数为60人,求高三年级的“过关”总人数是多少?
下面的临界值表供参考:
0.15
0.10
0.05
0.025
2.072
2.706
3.841
5.024
.
同类题2
随着互联网的发展,移动支付
又称手机支付
逐渐深入人民群众的生活
某学校兴趣小组为了了解移动支付在人民群众中的熟知度,对
岁的人群随机抽样调查,调查的问题是你会使用移动支付吗?”其中,回答“会”的共有50个人,把这50个人按照年龄分成5组,并绘制出频率分布表
部分数据模糊不清
如表:
分组
频数
频率
第1组
10
第2组
第3组
15
第4组
第5组
2
合计
50
表中
处的数据分别是多少?
从第1组,第3组,第4组中用分层抽样的方法抽取6人,求每组抽取的人数.
在
抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.
同类题3
有一个容量为66的样本,数据的分组及各组的频数如下:
10.5,14.5) 2 14.5,18.5) 4 18.5,22.5) 9 22.5,26.5) 18
26.5,30.5) 11 30.5,34.5) 12 34.5,38.5) 8 38.5,42.5) 2
根据样本的频率分布估计,数据落在30.5,42.5)内的概率约是( )
A.
B.
C.
D.
同类题4
当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.程度2019年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到下边频率分布直方图,且规定计分规则如下表:
每分钟跳绳个数
得分
17
18
19
20
(1)请估计学生的跳绳个数的众数、中位数和平均数(保留整数);
(2)若从跳绳个数在
、
两组中按分层抽样的方法抽取9人参加正式测试,并从中任意选取2人,求两人得分之和不大于34分的概率.
同类题5
当前,以“立德树人”为目标的课程改革正在有序推进. 高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施. 某地区2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分. 某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:
(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于33分的概率;
(2)若该校初三年级所有学生的跳绳个数
服从正态分布
,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差
(各组数据用中点值代替). 根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:
(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)
(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为
,求随机变量
的分布列和期望. 附:若随机变量
服从正态分布
,则
,
,
.
相关知识点
计数原理与概率统计
统计
用样本估计总体
频率分布表
根据频率分布表解决实际问题
计算几个数的平均数